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Problem and Motivation
I am investigating how to provide an effective au-
tomated verification method for programs written
in high-level transformation languages. High-level
transformation languages (Bravenboer et al. 2008;
Jouault and Kurtev 2005; Klint, Storm, and Vinju
2009; Kolovos, Paige, and Polack 2008; Mitchell
and Runciman 2007; Sloane 2011) provide rich
first-class operations for manipulating structures,
including native collections and deep type-directed
matching, allowing easy traversal of all elements
of target type reachable from a particular object.

Figure 1 presents an example transformation, the
rename-field refactoring, implemented in a small
formal transformation language called TRON (Al-
Sibahi, Dimovski, and Wąsowski 2016a). It re-
places the old field declaration with the new one
using native set operations (Line 6-7) and contin-
ues finding all field access-expressions using deep
type-directed matching (Line 8) updating the ones
pointing at the old field to point at the new one.
The example shows how these rich operations

allow expressing very concisely what otherwise re-
quires setting up complex visitors. My hypothesis
is that I can exploit the richness of operations to
optimize my verification technique, because I can
better target the right parts of code and provide
specialized operations for the target collections.

Background and Related Work
Existing automated verification approaches fo-
cus on encoding the transformation along with
structural constraints in an automated reasoning
tool (Büttner, Egea, and Cabot 2012; Jackson et al.
2010; Wang, Büttner, and Lamo 2014) to check
the correctness. Unfortunately, these approaches
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1 input: target_class: Class, old_field: Field, new_field: Field
2 precondition: old_field ∈ target_class.fields
3 ∧ new_field /∈ target_class.fields
4
5 // the refactoring program
6 target_class.fields :=
7 (target_class.fields \ old_field) ∪ new_field
8 foreach faexpr ∈ target_class match? FieldAccessExpr do
9 if faexpr.field = old_field ∧

10 faexpr.target.type = target_class then
11 faexpr.field := new_field
12 else skip

Figure 1: Simplified rename-field refactoring

do not scale to complex transformations; they also
make it hard to gain domain insight about the
problem and improve on, because they rely on
specific capabilities of target reasoning tools. Sym-
bolic execution techniques (Oakes et al. 2015) have
shown good improvements in efficiency and exten-
sibility, but have only so far been utilized on simple
mapping-like transformations.
Translation validation (Pnueli, Siegel, and

Singerman 1998; Samet 1975) is an alternative
approach that proves target properties for each
run of a transformation. However, since only each
particular run is validated, undiscovered bugs can
show up later e.g., in a production environment
where it would be more costly and time-consuming
to fix them.

Approach and Uniqueness
P1 Systematically derive an abstract semantics

framework from my concrete TRON (Al-Sibahi,
Dimovski, and Wąsowski 2016b) semantics
using collecting semantics as intermediary

P2 Instantiate my framework with a set of suit-
ably crafted abstract domains that enables
me to verify structural and simple semantic
properties

P3 Implement my framework as a tool which I
evaluate on an extended set of transformations
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from my previous work (Al-Sibahi, Dimovski,
and Wąsowski 2016a)

The design and implementation of abstract do-
mains is particularly challenging, since transforma-
tions typically modify large varied structures. This
means that one must be fairly careful in providing
a compact abstraction with high sharing between
possible states in order to avoid a combinatorial ex-
plosion. Further complications arise from the fact
that we must transform these abstractions accord-
ing to the rich operations (such as type-directed
matching) available in our high-level transforma-
tions while maintaining their consistency, without
falling back to an unfeasible strategy of brute-force
exploration of possible states.
To tackle this challenge, I will first use a type-

cardinality abstraction to gain insight:

(℘ (Store×Heap) ,⊆,∪,∩) −−−→←−−−α
γ(

Var→ Type× Card, v̂, t̂, û
)

This includes defining how to execute target state-
ments using the abstract state, for example a rule
for field updates could look like:

SJe1.f := e2Kσ̂ =


σ̂ if

EJe1Kσ̂ = 〈c, 1〉
∧ EJe2Kσ̂ = 〈c′, ε′〉
∧ c′ <: type(c, f)
∧ ε′ v card(c, f)

⊥ otherwise

This abstraction will eliminate the errors that re-
late to structural typing errors, e.g., assigning an
instance of type Expr to a field type Method or
assigning a set of multiple instances to a field which
expects a single instance.
I will then gradually define more refined ab-

stract domains that build on top of existing
shape abstraction techniques with inductive predi-
cates (Albarghouthi et al. 2015; Chang and Rival
2008; Rival, Toubhans, and Chang 2014; Toub-
hans, Chang, and Rival 2013) in combination with
abstraction inspired by the structural constraint
in my previous work (Al-Sibahi, Dimovski, and
Wąsowski 2016a). This would allow eliminating
more complex structural errors and simple induc-
tive semantic ones, e.g., using an instance of type
Variable whose name does not exist in the object-
level context of the manipulated structure.

Results and Contributions
I have so far derived an abstract semantics for TRON
(P1) and instantiated with a sophisticated type-
cardinality abstract domain (P2). In addition to
avoiding subject-level type and cardinality errors,
it immediately seems that it would also allow me to
better guide my symbolic executor from previous
work (Al-Sibahi, Dimovski, and Wąsowski 2016a)
since it allows me to automatically detect some un-
reachable branches. My current goals are to move
towards the more sophisticated abstract domains
(P2), so I can create one of the first automated
tools (P3) that can verify interesting properties of
transformations. My contributions also include pro-
viding concrete insights on designing and building
abstract domains for transformations, and hope-
fully this allows further research that scales up to
larger industrial-strength transformations.
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