
The Practical Guide to Levitation

Ahmad Salim Al-Sibahi

M.Sc. Thesis

Advisors:
Dr. Peter Sestoft
& David R. Christiansen
Submitted: September 1, 2014

ii

Abstract

The main goal of this paper was to provide a practical imple-
mentation of described types in Idris. This included modelling a
suitable generics framework inspired by the latest literature, pro-
viding practical examples that implemented commonly used algo-
rithms such as pretty printing and decidable equality, analysing
what difficulties there are when trying to implement an SYB-style
generics library in a dependently typed programming language,
and designing a data specialisation algorithm based on partial eval-
uation techniques.

The work presented had emphasis on making it easier for the
ordinary programmer to understand the usually abstract concept
of generic programming. Therefore, a detailed tutorial with a gen-
tle learning curve on how to use described types was presented,
and the practical examples were used to show how it was possi-
ble for the programmer to make suitable generic algorithms. Fur-
thermore, a procedure was provided to convert ordinary datatype
declarations to described types, which would make it easier for
an ordinary programmer to use possible library-provided generic
programs without much effort. Finally, the data specialisation al-
gorithm was designed to require little to no effort to use when
consuming a generics library. While the algorithm lacked an im-
plementation, and thus made it hard to do precise benchmarking;
a manual application of the algorithm to an indexed dependently-
typed datatype showed that it was possible to eliminate almost all
additional space and runtime overhead caused by the description
encoding.
Code. To access the final implementation of the code please visit
https://github.com/ahmadsalim/Idris-dev/tree/feature/levitation.
The relevant modules are Prelude.Generic and Language.Generic.*
in the prelude and base libraries respectively.

Keywords. Descriptions. Described types. Generic programming.
Levitation. Dependent types. Idris. Partial Evaluation. Construc-
tor Specialisation.

https://github.com/ahmadsalim/Idris-dev/tree/feature/levitation

Acknowledgements

Writing a Master’s thesis is a long stressful job, and without the neces-
sary help it would have been hard to finish it. I want to start by thank-
ing my supervisors Dr. Peter Sestoft and David R. Christiansen for their
guidance throughout the project. They always had time to meet even
though they had busy schedules, they always provided detailed feed-
back on my drafts, and they provided support via mail whenever I had
questions.

A lot of my ideas presented in this thesis, could not have come to life
without some of the more interesting discussions I had. I want to thank
Daniel Gustafsson and Dr. Nicolas Pouillard for helping me understand
some of the basic ideas of parameters and parametricity, which made me
able to provide the classifications I presented in this report. I also want
to thank Larry Diehl for interesting discussions we had on his work
on described types, which some concepts in this report were inspired
by. Additionally, I want to thank Dr. Edwin Brady and the nice people
at the #idris IRC channel on Freenode, which helped me when I had
issues with understanding some of the compiler structure and provided
fixes when some bugs were found. Finally, I want to thank the proof
readers of this report, Peter Ali Nicolaisen and Nicolai Skovvart which
provided helpful feedback on the structure, grammar and content.

Of course without social support, working alone for 6 months would
be a very lonely job. Therefore, I want to end these acknowledgements
by thanking my family for being understanding and helpful during this
stressful period of time.

Contents

Acknowledgments iii

Contents iv

List of Figures vi

1 Introduction 1
1.1 Context . 1
1.2 Problem definition . 2
1.3 Aim and scope . 3
1.4 Significance . 3
1.5 Overview . 4

2 Generic programming 5
2.1 The generic structure of inductive data types 5
2.2 Synthesising types from descriptions 16
2.3 The (mostly) gentle art of levitation 20
2.4 Ensuring tagging of descriptions . 22

3 Partial evaluation 24
3.1 The static nature of programs . 24
3.2 An optimising partial evaluator . 26
3.3 Dividing the static and dynamic parts of a program 29
3.4 Constructor specialisation . 31

4 Levitating Idris 35
4.1 Creating descriptions from ordinary datatype declarations 35
4.2 Parametric extension to descriptions 39

Contents v

5 Practical examples 46
5.1 Generic algorithms for deriving type class instances 46
5.2 Algorithms with purely generic properties 55
5.3 Scrapping your dependently-typed boilerplate is hard 56

6 Optimising Idris for flight 63
6.1 Analysing the encoding overhead 63
6.2 Preparing descriptions for erasure 67
6.3 Sketching out an algorithm for specialising described types 69

7 Discussion 75
7.1 Related Work . 75
7.2 Reflections and Outlook . 77

8 Conclusion 82

Bibliography 84

A Generation function 88

List of Figures

2.1 Annotated components of a datatype Declaration 6
2.2 A datatype that describes other datatypes 7
2.3 The Unit datatype and its description 7
2.4 A pair of Int and Bool . 8
2.5 The sum type of Int and String 8
2.6 The Natural numbers (Nat) . 9
2.7 A polymorphic list of elements 10
2.8 Description for datatypes with possible indices 10
2.9 Described version of Vec . 11
2.10 Constructor labels . 13
2.11 Tags: A structure for picking a constructor from a label col-

lection . 14
2.12 Example: Tags for constructors of Vec 14
2.13 The small pi operator: type for case analysis based on con-

structor tags . 15
2.14 Calculation of a property based on a specific constructor tag . 15
2.15 Description of Vec given a constructor tag 16
2.16 Synthesising descriptions into actual types 17
2.17 Knot-tying the synthesised description with itself 18
2.18 Synthesised version of the description for Vec 18
2.19 Example vector representing [1 , 2 , 3] as a value of a syn-

thesised description . 19
2.20 Functions for constructing values of synthesised vector de-

scription . 19
2.21 More readable version of [1 , 2 , 3] using aliases from Fig-

ure 2.20 . 20
2.22 A constructor for Desc to represent higher-order recursion . . 20
2.23 Synthesising HRec to a real type 21

List of Figures vii

2.24 Describing the Desc datatype itself 21
2.25 A specialised version of switch which returns descriptions . . 22
2.26 A datatype for representing descriptions with tags 22
2.27 Converting tagged descriptions to ordinary descriptions . . . 22
2.28 The described version of tagged descriptions 23

3.1 The function power which calculates the value xn for input
integers x and n . 25

3.2 power specialised with regards to n set to 5 26
3.3 Reduction of arithmetic and logical expression in power with

n set to 5 . 28
3.4 Pruning of statically determined branches for power_n5 28
3.5 The function power_n5 and necessary dependencies after pro-

gram point optimisation and constant folding 29
3.6 Two-level syntax annotated version of power function, where

underlined operations are static 31
3.7 A program for serialisation serialize, specialised using clas-

sic techniques with regards to a specific schema 32
3.8 A constructor specialised version of serialize 33

4.1 An annotation %described for generating descriptions from
declarations . 36

4.2 Elimination rule for Vec . 40
4.3 The nested datatype NList . 41
4.4 Alternative definition of Vec using equality constraints 41
4.5 A description for parametrised types 42
4.6 Synthesising an ordinary type from ParDesc 42
4.7 Adding support for describing functorial composition 43
4.8 Described version of NList . 44
4.9 Transforming CompRec to a type 44
4.10 Converting ParDesc to ordinary indexed Desc 45

5.1 A function that calculates type class constraints for a single
parameter type class . 46

5.2 Generically pretty printing a described type 47
5.3 Iterating through the description and pretty printing individ-

ual components . 47
5.4 Creating a Show instance for Pair using the generic gshow . . . 48
5.5 Constraints necessary to implement Show for Pair 49
5.6 Lemma specifying that TZ is not equal to TS 49

List of Figures viii

5.7 Lemma proving the injectivity of TS 49
5.8 DecEq instance for Tag . 50
5.9 Lemma proving that Con is injective 50
5.10 Injectivity lemma for the first component of dependent pairs 51
5.11 Injectivity lemma for the second component of dependent pairs 51
5.12 Generic implementation of decidable equality DecEq 51
5.13 The type signature of gdecEqd 52
5.14 Checking that two described types with description Ret are

equal . 52
5.15 Decidable equality for described types with description Arg . 52
5.16 Decidable equality for described types with description Rec . 53
5.17 Decidable equality for described types with description HRec . 53
5.18 Implementing the DecEq type class for Pair 53
5.19 Generic map . 54
5.20 Generically mapping the data components of a described type 54
5.21 Implementing the Functor type class for Nested 55
5.22 Generic tag testing . 55
5.23 Generic if-expression . 56
5.24 A couple of the most interesting functions for Uniplate 57
5.25 The Biplate type class . 57
5.26 A simplified model over blog-posts 58
5.27 Interesting operations using Uniplate on blog-post model . . 58
5.28 An instance of Biplate for working with timestamps in blog

posts . 59
5.29 A datatype describing a list with ordered elements 61
5.30 Updating Uniplate functions to allow changes in the index of

the target type . 62
5.31 An example datatype that contains two vectors, where one

has exactly one more element 62
5.32 A function that appends a vector to itself 62

6.1 The described version of the constructor True from Bool . . . 64
6.2 The described version of [42] of type Vec Nat 1 65
6.3 The described version of True with implicit arguments dis-

played . 65
6.4 The described version of [42] with implicit arguments dis-

played . 66

List of Figures ix

6.5 Annotating the static (underlined) and erasable (dotted un-
derline) parts of the constructors for the described version of
Vec . 67

6.6 An annotation to specify erasure of arguments 67
6.7 Extending the description constructor Arg to support an era-

sure annotation as argument 67
6.8 A dependent pair type Exists, with the first component being

erasable . 68
6.9 Synthesising the different versions of Arg, depending on era-

sure properties . 68
6.10 Updated version of alias Cons, now using Evidence for storing

erasable argument n . 68
6.11 Specialising Data with parameter ix having value Nat, and

parameter d having value VecD Int 69
6.12 Normalising the Synthesise call from Figure 6.11 70
6.13 Unboxing the dependent pair type argument to ordinary ar-

guments of Con . 71
6.14 Splitting constructors based on the different possible values

of Tag (with additional unboxing) 71
6.15 Eliminating equality restrictions on type arguments, by inlin-

ing the expected values as indices 72
6.16 Specialising gshow with regards to the description VecD Int

and its related constraints . 73
6.17 The specialised version of gshow after branching on tag and

further applying partial evaluation techniques 73
6.18 The final specialised version of gshow, using the specialised

version of the datatype Data__Vec_Int 74

Chapter 1

Introduction

1.1 Context

Algebraic datatypes such as Boolean values, lists and trees form a core
part of modern functional programming. Most functions written work
directly on such datatypes, but some functions like structural equal-
ity or pretty printing (see Example 1) do not directly dependent on
the datatype itself. Therefore, writing such functions for each differ-
ent datatype becomes a repetitive exercise. In fact it is possible to write
an algorithm over the structural definition of the datatype, which the
computer then could use to derive an actual function for each particular
datatype.

Example 1
Pretty printing an element of any algebraic data type follows a very
simple procedure:

1. Print the name of the constructor

2. Iterate over the constructor arguments and pretty print them, with
each argument surrounded by parentheses if necessary

a) If the argument is a recursive reference to the type itself, then
call this procedure recursively (starting at point 1).

b) If the data element is of another type, then

i. Find the correct pretty printing function for that type
ii. Pretty print the field using the found function

Chapter 1. Introduction 2

Enter the world of generic programming where the target datatype
is the one describing the structure of other datatypes, often called the
description. While generic programming sounds promising, it is usually
seen as an aspect of Haskell (Peyton Jones et al. 2003) that is challenging
to use by ordinary programmers. To represent the description, it is
often required to use special language extensions (Magalhães et al. 2010;
Jansson and Jeuring 1997) and the programming style tends to require
other abstractions than used in ordinary programs.

However, in dependently-typed languages such as Idris (Brady 2013)
or Agda (Norell 2009) it is possible to create a correct description using
ordinary datatype definitions (Benke, Dybjer, and Jansson 2003). Fur-
thermore, Chapman et al. (2010) show that it is possible to build a self-
supporting closed type system which is able to convert these descrip-
tions to ordinary types (creating so-called described types), while still be-
ing powerful enough to describe the description datatype itself. In such
system, generic programming is just a special case of ordinary program-
ming.

1.2 Problem definition

The current work on generic programming in dependently-typed lan-
guages presents both elegant and typesafe ways to represent the struc-
tural descriptions of datatypes. Furthermore, it allows the programmer
to save both time and boilerplate code while reducing mistakes by using
ordinary programming techniques to do generic programming.

However, the state of the art is heavily theoretically oriented, which
might lead to some challenges when a system needs to be developed
with a practical audience in mind. First of all, multiple incompatible de-
scription formats are often presented, sometimes even in the same paper,
which might not be particularly attractive in a practical setting. Sec-
ondly, there has been little work done on how to integrate such descrip-
tions in languages which contain features such as type classes and proof
scripts. Finally, datatypes synthesised from descriptions create large
canonical terms; thus, both type checking and runtime performance are
very slow. In the end, if an efficient and easily usable framework for
programming with described types could be implemented successfully,
it would save programmers both the time and effort required to write
repetitive functions.

Chapter 1. Introduction 3

1.3 Aim and scope

The aim of this research is to provide a practical and efficient imple-
mentation of described types in Idris. This project has three primary
goals.

The first goal is to find a good definition of the description that sup-
ports many common datatypes. I mainly seek to reuse some of the exist-
ing work, and not to further develop underlying type theory to support
more complex inductive families; neither will I focus on supporting all
language features of Idris such as implicit arguments and codata defini-
tions (The Idris Community 2014).

The second goal is to present realistic examples using generic func-
tions working on described types. This mainly includes implementing
functions that can be used to derive type class instances, and a Scrap
Your Boilerplate-style (SYB) library (Lämmel and Peyton Jones 2003;
Mitchell 2014) for generic querying and transformation.

The final goal is to describe how partial evaluation and related tech-
niques can be used to optimise the described types and dependent
generic functions in order to achieve acceptable performance. This in-
cludes using techniques such as polyvariant partial evaluation (Jones,
Gomard, and Sestoft 1993) and constructor specialisation (Mogensen
1993).

1.4 Significance

The main contributions of this thesis are:

• an example-based tutorial for understanding described types in
the context of a practical programming language, namely Idris;

• an explanation and classification of some of the different defini-
tions of parameters found in the literature;

• a procedure that generates descriptions from ordinary datatype
declarations;

• an generic implementation of common operations such as decid-
able equality, pretty printing and functors, which can be used to
provide default implementations to type class methods;

Chapter 1. Introduction 4

• a discussion of the challenges that arise when trying to implement
a SYB-style generics library in dependently typed languages;

• design of an algorithm using optimisation techniques based on
partial evaluation for reducing the runtime size and time overhead
for described types and accompanying generic functions.

1.5 Overview

The report is structured as follows. Chapter 2 presents an introduc-
tion to described types specifically focusing on recent developments us-
ing dependently-typed programming languages. Chapter 3 presents an
overview of techniques for partial evaluation of functions and speciali-
sation of datatypes. Chapter 4 discusses specifically how I implemented
described types in Idris and continues with practical examples in Chap-
ter 5. Chapter 6 presents the optimisations that can be made in order to
improve the runtime performance of described types and generic func-
tions. Finally, Chapter 7 discusses the challenges that still lie ahead and
Chapter 8 concludes the effort.

Chapter 2

Generic programming

2.1 The generic structure of inductive data types

2.1.1 Anatomy of a datatype

To build an intuition that will be useful in understanding descriptions,
let us first start by looking closely at how datatypes are structured. Re-
call from Page 2 that a description is a data value representing the struc-
ture of a particular datatype. Figure 2.1 presents an annotated version
of a typical dependently-typed datatype representing vectors.

A datatype consists of a type constructor which lists what type-level
arguments are required, and zero or more data constructors which de-
scribe how to create values of the datatype. The type constructor has
three components: a name for the datatype, types of any possible pa-
rameters, and the types of possible indices. In Figure 2.1 there is no
syntactic difference between a parameter type or an index type since
Idris figures that out automatically 1, unlike other dependently-typed
languages like Agda which have a syntactic distinction.

Similarly to the type constructor, a data constructor needs a name,
also called a tag. Following the tag, the data constructor declaration
contains the types of the arguments stored in the constructor and the
resulting type that must use the type constructor of the datatype. In our
example two constructors are declared, Nil and Cons. The constructor
Nil does not hold any data, so it only needs to define the resulting type
which is Vec a Z (a vector with length 0). The constructor Cons contains

1If an argument to a type constructor does not change in the data constructor
declarations, Idris considers it a parameter, otherwise an index.

Chapter 2. Generic programming 6

Figure 2.1: Annotated components of a datatype Declaration

three different types of arguments: an ordinary implicit argument, an
ordinary explicit argument, and an explicit argument of the type itself
(recursive); the resulting type for Cons is Vec a (S n), that is, a vector of
length 1+n where n is the length of the recursive argument.

The colouring scheme for code presented in this paper uses the fol-
lowing conventions:

Blue is used for type constructors

Green is used for data constructors

Dark Red is used for top-level declarations

Light Red is used for locally-bound variables

Purple is used for literals (integer, string, etc.)

Bold Black is used for keywords (if, data, etc.)

2.1.2 A description for datatypes

It is now possible to try to represent a suitable datatype for descriptions.
Figure 2.8 presents one possible solution, influenced mainly by the work

Chapter 2. Generic programming 7

of McBride (2010) and Diehl and Sheard (2014). Similarly based on that
work, Section 2.2 will later present how to construct actual described
types from these descriptions.

Figure 2.2: A datatype that describes other datatypes

The description datatype Desc has three main constructors:

• Constructor Ret represents the end of a description

• Constructor Arg represents the addition of an argument of any
type to a given description; the first argument of Arg is the type
of argument expected and the second argument is the rest of the
description dependent on a value of that type.

• Constructor Rec represents a recursive argument of the described
datatype. The argument of constructor Rec is the specification of
the rest of the description.

To get an idea on how descriptions for various interesting datatypes
look like, the following paragraphs will show a series of examples pro-
viding a side-by-side comparison of ordinary declarations to descrip-
tions. The declaration of the trivial singleton type Unit is displayed
in Figure 2.3a, and its corresponding description is displayed in Fig-
ure 2.3b. Since the sole constructor MkUnit does not contain any argu-
ments, Ret is used to simply end the description.

(a) Declaration of Unit (b) Description of Unit

Figure 2.3: The Unit datatype and its description

Chapter 2. Generic programming 8

Constructor arguments A more interesting datatype is displayed in
Figure 2.4a, namely the datatype Pair representing a pair of Int and
Bool. The translation to the corresponding description, as displayed
in Figure 2.4b, seems straightforward. For each argument of MkPair

that is used (arg : a) -> b, the translation would be of the form
Arg a (\arg => b). Finally, to specify the end of the description, Ret

is used.

(a) Declaration of Pair (b) Description of Pair

Figure 2.4: A pair of Int and Bool

A key aspect of algebraic datatypes is the ability to choose between
multiple constructors. Figure 2.5a shows a simple datatype Either

which provides two constructors Right and Left, than can hold a value
of Int and String respectively.

Choice of constructors Since there is no explicit way to encode a choice
between multiple constructor in the provided description, instead a
boolean argument isRight is used as a tag to determine which construc-
tor is described. If the value of isRight is true then the resulting descrip-
tion is expected to be for the Right constructor, otherwise is is expected
to be for the Left constructor. The description for each constructor is
then specified in a similar fashion to datatypes with one constructor,
such as Pair described above.

(a) Declaration of Either (b) Description of Either

Figure 2.5: The sum type of Int and String

Chapter 2. Generic programming 9

Recursive arguments In addition to allowing the choice between mul-
tiple possible constructors, what makes algebraic datatypes interesting
is the ability to have recursive (or inductive) instances. The simplest re-
cursive datatype is the natural numbers Nat (displayed in Figure 2.6a)
which has two constructors, Zero which represents 0 and the recursively
defined Succ which represents 1+n for any natural number n. The corre-
sponding description is displayed in Figure 2.6b which is mainly built
up using the principles introduced before. The only addition is that the
description for Succ now uses Rec to specify that it requires a recursive
argument (to type Nat itself).

(a) Declaration of Nat (b) Description of Nat

Figure 2.6: The Natural numbers (Nat)

Parameters Figure 2.7a shows one of the classical datatypes in func-
tional programming languages, namely List. Unlike Pair and Either

which were monomorphic in the presented examples, List is polymor-
phic in its elements. The way to represent parameters is by having them
as arguments to the function describing the particular datatype, which
allows them to be qualified over the whole description. The description
itself is built using the previously described methods and is displayed
in Figure 2.7b. There is a Boolean argument isNil, which encodes the
choice between the two constructors of the list, Nil and Cons. Like the
description for Zero, the description for Nil is simply Ret since it does
not accept any arguments. The description for Cons takes an argument
of the parameter type (the head of the list), a recursive argument (the
tail of the list) and then ends the description.

The reader may have noticed that the datatypes presented so far are
perfectly expressible in ordinary functional languages like Haskell or
Standard ML (Milner, Tofte, and Macqueen 1997). To really exploit the
power of dependently-typed programming languages, it should be pos-
sible to express datatypes that may be indexed by values. This will be
discussed in Section 2.1.3.

Chapter 2. Generic programming 10

(a) Declaration of List (b) Description of List

Figure 2.7: A polymorphic list of elements

2.1.3 Indexing descriptions

To allow datatypes to be indexed by values, the description structure
takes a parameter that describes what the type of indices must be. Fig-
ure 2.8 shows an updated version of Figure 2.2, that contains the nec-
essary parameter ix for indexing datatypes. The constructors Ret and
Rec, must also be updated to take a value of ix in order to represent
what the index of the result type and recursive argument must be re-
spectively. Descriptions that do not require indices can be converted to
indexed descriptions by using the unit type Unit (or its syntactic form
()) as index.

Figure 2.8: Description for datatypes with possible indices

To give an example on how an indexed datatype looks like, let us
take a new look at Vec from Figure 2.1. Figure 2.9 shows the corre-
sponding description of Vec with comparable annotations.

The type signature for the description of Vec mimics the one for
the actual datatype closely, but there are nonetheless some differences.
There is now an explicit distinction between parameters and indices; the
type for a parameter can still be specified as an argument for the descrip-
tion value, whereas the type of an index must be provided to the Desc

type constructor. This is to ensure that all provided indices conform to
the same expected type, while still allowing the values to change inside
the description.

A Boolean argument isNil is used to describe the choice between
constructors Nil and Cons. The constructor Nil does not contain any

Chapter 2. Generic programming 11

Figure 2.9: Described version of Vec

data so we simply use Ret Z, which indicates that the description is fin-
ished and the resulting type is expected to have index Z, analogously
to Figure 2.1. The constructor Cons takes first two ordinary arguments:
a Nat representing the length of the tail, i.e. the index of the recursive
argument, and an argument of the parameter type a representing the
head. Following these arguments we take a recursive argument rep-
resenting the tail—specified using Rec—that must have the value of the
input Nat argument n as index, i.e. the argument must be of type Vec a n.
We finish the description with Ret and specify that the resulting index
must be S n, just as in Figure 2.1.

Challenges and limitations

Even though it was possible to describe a variety of datatypes there are
still a few questions that can be raised, such as: How is it possible to
choose between more than two constructors? Why is there only one
type for indices? Why aren’t the type of parameters required to be
encoded inside the description datatype itself? How is it possible to

Chapter 2. Generic programming 12

represent more complex datatypes such as mutual recursive ones? I
seek to answer these questions in the following paragraphs.

To encode the choice of more than two constructors, a simple solution
could be to nest multiple Boolean values acting as a form of binary enu-
meration of tags. However this encoding is fairly crude: it does not cap-
ture important information such as the names of constructors, requires
a series of possibly complicated tests and is not easily extendible if one
wants to extend descriptions with new constructors. In Section 2.1.4,
I will present a more sophisticated encoding that does not suffer from
these limitations.

For more demanding datatypes that need more than one index,
the indices must be uncurried using dependent pairs. For example, a
datatype with signature (n : Nat) -> Fin n -> Type must use the depen-
dent pair (n : Nat ** Fin n) as the type of its index.

Since parameters are usually quantified over the whole datatype (i.e.,
they do not change) it is possible to just accept them as external argu-
ments when building a description. However, this encoding can pre-
clude interesting generic programs from being written, such as the func-
torial map. In Chapter 4, I will discuss a modification to the description
datatype that permits encoding the types of parameters directly.

Finally, there is the question on how more complicated datatypes are
to be represented. Datatypes that require recursive functions as argu-
ments like Desc, can not currently be represented in the presented en-
coding and the description must be extended to be able to describe types
as itself (see Section 2.3). Mutual recursive datatypes cannot be repre-
sented directly, but it is possible to use indices to represent an isomor-
phic representation. For example, for two mutually recursive datatypes
one could use a boolean argument as index which determines the ac-
tual datatype is currently described. Unfortunately, a challenge that still
persists is that the most complex inductive families—such as inductive-
inductive and inductive-recursive definitions—can not be represented
using the presented descriptions.

2.1.4 An informative encoding of constructors

In Section 2.1.2 a Boolean variable was used to determine the choice be-
tween two constructors, and concluded that his approach had multiple
disadvantages. First of all, the Boolean encoding does not capture the
names of the respective constructors which might be important when it

Chapter 2. Generic programming 13

is desired to pretty print or serialise a data structure. Secondly, when
there are more than two constructors, it can quickly become compli-
cated to provide a suitable description. Multiple Boolean arguments
are required and mapping these Boolean values to description is not
exactly straightforward. For example, should two Boolean values en-
code the choice between 3 or 4 constructors? Finally, and perhaps more
importantly, it is not easy to modify the number of constructors easily
with the Boolean encoding. That is, it might be desirable to compute a
new description from a provided one and in that process to add a new
constructor, e.g., adding a default “error” constructor to each datatype.
This section presents a more informative encoding of constructors, and
shows how it is possible to use that encoding when describing non-
trivial datatypes.

To represent which constructors are available we first are going to
declare two types (heavily inspired by Dagand (2013); Diehl and Sheard
(2014)) as displayed in Figure 2.10a: CLabel which represents a name for
a constructor, and CEnum which represents a list of constructor names.
For the sake of simplicity, the provided constructors in a CEnum are as-
sumed to be provided uniquely by the user, however one could stipulate
such uniqueness condition explicitly if desired. Figure 2.10b show an
example of how to represent the available constructor names of Vec.

(a) Representation (b) Example: Constructors of Vec

Figure 2.10: Constructor labels

Now that it is possible to represent the available constructors, we
can encode a way of choosing a particular constructor tag. Figure 2.11
shows a datatype Tag with two constructors: TZ which represents the
constructor that is on top of the current list and TS which represents a
constructor further along the list. As such, Tag specifies a valid index
into a (non-empty) list of constructor tags.

This encoding has multiple advantages: it ensures that all construc-
tor labels stored in our data exist in the expected list of constructors,
it ensures that all datatypes which are dependent on a tag must have

Chapter 2. Generic programming 14

at least one constructor, and as a consequence it is possible to specify
the empty type by simply requiring a tag on an empty list of expected
constructors (since such value would be impossible to create). This en-
coding makes it possible to use tactics in Idris to automate the retrieval
of a tag given a constructor label; something which saves time when
constructing values manually.

Figure 2.11: Tags: A structure for picking a constructor from a label collection

For the constructors of Vec, Figure 2.12 shows an example on what
the tag values are. For Nil the value is TZ since it is the first in the
list of VecCtors, and for Cons the value is TS TZ since it is the second.
Since there are only two elements in VecCtors, it should not be possible
to create any other valid constructor tag, and as therefore it is a good
representative for enumerating the constructors of Vec.

(a) Tag for Nil (b) Tag for Cons

Figure 2.12: Example: Tags for constructors of Vec

2.1.5 A constructive type of choice

Similarly to how if was used to map Bool values to the descriptions of
the various constructors of a datatype in Section 2.1.2, it is desirable to
have a way to map Tag values to suitable values of a desired type. The
following section will describe the switch function that does exactly this.

Since the count of constructors for a datatype can vary in size, it is
necessary to calculate a type that allows mapping the tag of each con-
structor to a suitable value (displayed in Figure 2.13). It is essentially a
function that provides a one-to-one mapping from the list of construc-
tors to a series of right-nested pairs ending with (). The type of the
resulting value prop can be dependent on the input constructor tag, and
therefore the function is called π or the small pi operator. The operator π

Chapter 2. Generic programming 15

is small in the sense that unlike the dependent function type Π which
allows the result to dependent on any type of input, π only allows de-
pendencies on constructor tags.

Figure 2.13: The small pi operator: type for case analysis based on constructor tags

Given a way to map a list of constructors to a list of values using π,
it is now possible to define switch which can look up the corresponding
result value in the map for a particular Tag. The function switch is
displayed in Figure 2.14 and has two branches: if the constructor to
map is the first one in a list of constructors, it simply returns the first
value in the corresponding mapping, otherwise it continues the search
using the rest of the provided elements (skipping the first constructor
and its corresponding mapping). Since there can be no value of Tag on
an empty enumeration of constructors, it is not required to handle that
case.

Figure 2.14: Calculation of a property based on a specific constructor tag

As an example, Figure 2.15 shows the description of Vec (from Fig-
ure 2.9) again, but this time using the new constructor tag encoding
instead of a Boolean variable.

Chapter 2. Generic programming 16

Figure 2.15: Description of Vec given a constructor tag

In summary, while the description might initially seem more compli-
cated than before, it has a couple of clear advantages: the encoding now
contain the constructor tag and it is possible to choose between more
than two constructors at the same time.

2.2 Synthesising types from descriptions

In Section 2.1 I had displayed how it was possible to create descriptions
that support many common datatypes in Idris. In this section I will
present a way to convert or synthesise these descriptions to actual types,
that allows the programmer to construct values of these described types
with actual data.

2.2.1 Datatype synthesis

It is finally time to convert the description to an actual type. Figure 2.16
shows the Synthesise function which takes a description, the final form
of that datatype and the resulting index, then it returns a type which
can contain the described data.

• If we reach the end of the description i.e., Ret, the only thing that
we need to ensure is that the provided resulting index matches the
expected index provided in the description. In order to apply such
constraint we use the propositional equality type.

• For recursive arguments i.e., Rec, we construct a dependent pair
where the first argument contains a value of the fully-synthesised
type with the given index and the second argument contains the
synthesised version of the rest of the provided description. The

Chapter 2. Generic programming 17

reason that we need the final form of the datatype in order to
construct a recursive argument is due to the fact that if we call
Synthesise recursively on that argument we would get stuck in an
infinite loop!

• For ordinary arguments i.e., Arg, we also create a dependent pair.
The first argument of the dependent pair is a value arg of the
provided type a, and the second argument is the synthesis of the
rest of the provided description d given arg. This is isomorphic to
how an ordinary constructor would store the data and as such the
dependent pair serves a good target structure for our synthesis.

Since the dependent pair is used as the target type for the synthesis, it
itself must be a core part of the type theory similarly to the propositional
equality, if we want to treat all datatype declarations as describable.

Figure 2.16: Synthesising descriptions into actual types

We are able to create actual types using Synthesise from the pro-
vided descriptions. However, a problem occurs when we want to use
Synthesise since it requires the final form of the described datatype as
input but the only way to synthesise the datatype is using Synthesise

itself. In order to “tie the knot” and complete input for Synthesise, we
define a datatype Data that takes a description and provides the final
form of the described datatype (see Figure 2.17). Data has only one con-
structor namely Con which takes as input the synthesised version of the
description d with Data d serving as argument for the final form of the
datatype in Synthesise. This works since each time we face a recursive
argument it must be constructed using Con which avoids an infinite loop
in Synthesise as long as the elements that are constructed are smaller in
size.

Chapter 2. Generic programming 18

Figure 2.17: Knot-tying the synthesised description with itself

2.2.2 Example: Constructing vectors

To get a more concrete intuition on how it is possible to construct data
values of described types, this section will look at the synthesised ver-
sion of Vec. Figure 2.18 shows Vec which is a function mimicking its
corresponding type constructor, and it even shares the same type signa-
ture. The function Vec returns a described type using Desc passing along
the description of Vec and its required parameters (i.e., VecDesc a), and
additionally the expected value of the result index (i.e., n).

Figure 2.18: Synthesised version of the description for Vec

A simple example representing the vector [1 , 2 , 3] is presented in
Figure 2.19. Although the value might seem a bit overwhelming at first,
it follows a simple pattern: each time a value of Vec is needed Con is used,
followed by its required arguments in the form of nested dependent
pairs, and finally with Refl, which ensures that the provided index of
the value matches up with the expected one. There are 4 occurrences of
Con and Refl in the example, three for Cons and one for Nil. For all cases
the first two arguments represent the constructor label and associated
tag. For Cons, the first following argument is the length of the rest of
the vector (the value of index n) followed by the value of the list head
and the list tail, ending with Refl. For Nil, the value is ended with Refl

since it does not contain any data.
As might have become apparent there are a couple of shortcomings

in the example, or rather the way values of described types are con-
structed. One shortcoming is that there is a lot of boilerplate required
when values are constructed, which makes the result somewhat unread-
able. A solution to overcome that shortcoming is presented in the next
paragraph. Another shortcoming is that the resulting terms become

Chapter 2. Generic programming 19

Figure 2.19: Example vector representing [1 , 2 , 3] as a value of a synthesised description

very large, and in turn slowing down program execution, compared to
the original version of the datatype. For example, Nil becomes inflated
to Con ("Nil" ** (TZ ** Refl)) which is significantly more complex. A
description on how to improve the size of resulting terms and speed up
the performance of dependent programs is presented in Chapter 6.

In order to make creation of values of described types easier and
the resulting terms more readable, it is possible to use functions as syn-
onyms for the constructors. Figure 2.20 shows Nil and Cons as synonyms
for the described version of Nil and Cons respectively. Since Idris can in-
fer the values of a and n automatically in this context, they are converted
to implicit arguments in these synonyms (which further increases read-
ability).

Figure 2.20: Functions for constructing values of synthesised vector description

Using these synonyms, the constructor of the value in example in
Figure 2.19 becomes simpler and much more readable. Figure 2.21
shows the updated version, and it looks almost exactly like the origi-
nal value it needed to describe [1 , 2 , 3].

Chapter 2. Generic programming 20

Figure 2.21: More readable version of [1 , 2 , 3] using aliases from Figure 2.20

2.3 The (mostly) gentle art of levitation

The previous sections presented a series of constructions that make it
possible to have described types. What may have become apparent for
the reader is that many of the constructions such as Data, Tag and switch

cannot themselves be described, since they are necessary building blocks
for having descriptions. However, what might be surprising is that the
description type Desc itself, isn’t in fact limited by such a constraint
and can be described using itself. This is the key point addressed by
Chapman et al. (2010) in “The Gentle Art of Levitation”.

The description datatype Desc contains many of the constructors
needed to describe itself. However, one might experience trouble when
trying to describe Arg since it requires an argument of the following
type: (a ->Desc ix). This argument describes a function which result
type is the datatype itself (a so-called higher-order inductive argument),
which Rec isn’t strong enough to express since it only permits primitive
recurrences. Figure 2.22 shows a new constructor HRec, which allows
specification of higher-order inductive arguments. In addition to the ar-
guments required by Rec, HRec also takes an argument a, which specifies
the type of arguments expected in the higher-order inductive argument
it describes.

Figure 2.22: A constructor for Desc to represent higher-order recursion

The function Synthesise must be extended with a clause for HRec.
Figure 2.23 shows the corresponding clause, which looks very similar to
the one for Rec, except the first component now requires a function from
the provided type a to the datatype itself instead of just a reference to
the datatype.

Finally, all the required constructors are present and it is now pos-
sible to piece together a description for Desc. Figure 2.24 shows the
complete description, including for the newly added HRec constructor.

Chapter 2. Generic programming 21

Figure 2.23: Synthesising HRec to a real type

The description of Desc is parametrised by the type of indices ix that
possible derived descriptions can have, and is not indexed by anything
particularly interesting (the unit type () is used in the figure). The de-
scription for each constructor is translated using the same techniques
presented in Section 2.1. The only interesting case is the one for Arg,
which uses HRec () a (Ret ()) to represent the higher-order inductive
argument (a -> Desc ix).

Figure 2.24: Describing the Desc datatype itself

Perhaps, the key thing to notice is that a function switchDesc was
used instead of switch when describing Desc. Figure 2.25 shows how
switchDesc is defined by specialising switch. However, if Desc is a de-
scribed type based on DescDesc then such a definition would be circular.
This is because the general switch requires the result type Desc to be
given as an argument, but Desc is dependent on DescDesc. Therefore,
Chapman et al. (2010) define switchDesc to be handled specially in their
type theory, eliding the definition of the body and hard-wiring its return
type to be Desc 2. Now, DescDesc can be type checked without any issues
and levitation is achieved.

2Of course, such trick only works if the type Desc is already known to be in the
meta-theory. However, the knowledge of its elements is not necessarily required and
it is possible to inspect these in a similar fashion to other datatypes.

Chapter 2. Generic programming 22

Figure 2.25: A specialised version of switch which returns descriptions

2.4 Ensuring tagging of descriptions

The plain description type Desc accepts descriptions of any form, some-
thing which can limit how some algorithms are written. For example, it
might be useful to pretty print the constructor tags differently from the
constructor arguments, and therefore it would be nice if the type system
ensured that it was possible to know where the tags were. Similarly, if
one needs to extend the number of constructors in a described type, it
is necessary to know how tags are used.

Figure 2.26: A datatype for representing descriptions with tags

Dagand (2013) suggests that it is possible to create a type represent-
ing tagged descriptions while keeping the same level of expression (see
Figure 2.26 for an inspired implementation). The type TaggedDesc rep-
resents the type of functions from tags to descriptions, which is exactly
the result type of function switchDesc.

Figure 2.27: Converting tagged descriptions to ordinary descriptions

A function Untag which converts tagged descriptions to ordinary de-
scriptions is displayed in Figure 2.27. The Untag function converts the
function arguments of TaggedDesc to described data by using Arg, which
ensures that the provided constructor tags are stored with their respec-
tive constructor arguments.

Chapter 2. Generic programming 23

A key advantage of accepting a TaggedDesc and then calling Untag—
instead of merely accepting an ordinary Desc—is that the type system
gains knowledge that the first two arguments of data are of type CLabel

and Tag. This permits the algorithm designer, to treat those arguments
differently when pretty printing, serialising, or performing other opera-
tions that depend on the names of the constructors.

Figure 2.28: The described version of tagged descriptions

Figure 2.28 shows a type TData which is the analogous of Data for
tagged descriptions. The definition is simple as it simply converts the
provided tagged description to an ordinary description, and then calls
Data on that. Therefore, the main point of using TData is to make it easy
to convert a tagged description to a described type.

Chapter 3

Partial evaluation

The description datatype Desc presented in Chapter 2 was very flexi-
ble and could express many common algebraic datatypes. However as
discussed in Section 2.2.2, the corresponding terms used to construct
values of described types were much larger and more complex than
the corresponding values of ordinary datatypes, yet they do not convey
much more relevant information. The reason is that much of the con-
tained data is static information needed solely to provide the right form
for generic algorithms, but is not needed when dealing with specific
structures. Therefore this chapter discusses relevant partial evaluation
techniques needed to minimise the size of the large terms in order to im-
prove runtime performance, by specialising the algorithm with regards
to relevant static data when possible.

3.1 The static nature of programs

It hardly comes as a surprise, that for many programs, not all of their
input might be dynamic. Sometimes it is due to the way programs
are structured in a modular fashion (e.g. functions or objects), where
readability and reusability are highly valued even if some of the input
to these structures is static. For example, writing minutesInADay = 24 * 60

is usually seen as more preferable to writing minutesInADay = 1440, since
it better captures the intent of the programmer. Other times, it may be
because that the input is known ahead of time and therefore in some
way hard-coded (e.g., configuration files or constants). No matter the
reason, it can be said that any program p accepts a series of static input

Chapter 3. Partial evaluation 25

is0...isn ∈ Is and a series of dynamic input id0...idm ∈ Id, resulting in
some output O.

In many cases it is desirable to only compute programs with known
input once and for all, instead of suffering a performance loss every time
the program is run. One technique for static computation of programs,
is called partial evaluation (Jones, Gomard, and Sestoft 1993). A program
that does partial evaluation mix is called a partial evaluator, and accepts
as input another program (often called the object program) and a series
of static input for that particular program. The result of mix is a new
program called the residual program which is specialised with regards to
the specified static input. That is for any program p, partially evaluat-
ing it regarding its static input Is—that is mix p Is—results in a residual
program pr. The residual program pr accepts the remaining dynamic in-
put Id and produces the same expected result O; therefore, the following
equation is satisfied: p Is Id ≡ (mix p Is) Id ≡ pr Id ≡ O.

The canonical example of partial evaluation (Jones, Gomard, and Ses-
toft 1993; Mogensen and Sestoft 1997; Taha 2004) is the power function
which calculates xn and is displayed in Figure 3.1. In this version of
power, the control flow is mostly determined by its first variable n. There-
fore, if n is provided statically then it is possible to specialise power to
avoid the branching dependent on n and recursion at run-time.

Figure 3.1: The function power which calculates the value xn for input integers x and n

Figure 3.2 shows a partially evaluated version of power, where n is
fixed statically to 5. To achieve such optimisation, the partial evaluator
must support various interesting optimisation techniques such as con-
stant folding, program point specialisation and unfolding/transition compres-
sion (Jones, Gomard, and Sestoft 1993) which will be discussed further
in Section 3.2.

Chapter 3. Partial evaluation 26

Figure 3.2: power specialised with regards to n set to 5

3.2 An optimising partial evaluator

Since the only requirement for a partial evaluator is that the residual
program depends only on some dynamic input, it is simple to make
a trivial partial evaluator. The trivial partial evaluator simply “hard-
codes” the provided static input, and otherwise leaves the input object
program unchanged. However, such partial evaluator is hardly inter-
esting from a performance perspective. In order for a partial evaluator
to be interesting, it must be able to utilise a set of optimisation tech-
niques while evaluating a program. In this section, three commonly
used optimisation techniques for partial evaluators are presented: con-
stant folding, program point specialisation and unfolding.

3.2.1 Program Point Specialisation

According to Jones, Gomard, and Sestoft (1993), a program point is a
referable point of execution that forms a part of a larger program. For
many modern languages, a program point would be a function or pro-
cedure; however, it could also be a label in an assembly language or a
clause definition in a logic language. Program point specialisation is the
act of creating new versions of existing program points specialised with
regards to some statically provided input. That is, a specialised version
of a program point l is a pair 〈l , Is〉 such that Is is some provided static
input somewhere in the program. Figure 3.5 shows a version of power

where n is specialised to 5, and all recursive calls to power are partially
evaluated using program point specialisation.

Polyvariant Specialisation

A program point specialisation is said to be polyvariant if there are multi-
ple versions of originally the same program point specialised with vary-

Chapter 3. Partial evaluation 27

ing static input (Hughes 1999; Jones, Gomard, and Sestoft 1993). For
example, the power function is specialised with regards to different val-
ues for the exponent n in Figure 3.5 and is therefore polyvariant.

A special case of polyvariant specialisation, is when a program point
specialisation is said to exhibit a polyvariant division. A division is poly-
variant if the set of static arguments varies for specialised versions of
that particular program point. Finding a division between static and dy-
namic arguments of a program point is not a trivial task, and especially
not finding a polyvariant one. Section 3.3 discusses what techniques
there are for finding such divisions.

3.2.2 Constant folding

Simply put, constant folding is the idea of reducing pure expressions
with statically known arguments as much as possible. This includes
simple primitive arithmetic and logic operations such as addition, mul-
tiplication, conjunction and equality testing; but also pruning statically-
determined branching such as if-expressions (Wegman and Zadeck
1991; Jones, Gomard, and Sestoft 1993) or case-trees (Boquist 1999).

Reducing arithmetic and logical operations If all the operands of a
given arithmetic or logical operator are statically determined then re-
ducing such an operation is simply evaluating the result, e.g., for an
expression 2 + 2 it can simply be reduced to the value 4. However,
constant propagation algorithms are often allowed to do other types of
simplifying reductions where some operands are dynamic, such as re-
ducing addition with 0, multiplication with 1 or conjunction with True.

Figure 3.3 shows power from Figure 3.1 again under specialisation
with n set to 5. In the figure, all arithmetic expressions (namely mod,
div and “-”) and logic expressions (namely “==”) have been reduced to
simple integer values.

Branch pruning If a conditional is somehow reduced to a constant
value by another optimisation, it is possible to completely eliminate
branching in if- or case-expressions. For if-expressions, if the con-
ditional is reduced to True then the whole expression is reduced to the
then branch, otherwise (if it is reduced to False) then the whole expres-
sion is reduced to the else branch. For case-expressions, they are simply
reduced to the branch that matches the pattern of the value provided.

Chapter 3. Partial evaluation 28

Figure 3.3: Reduction of arithmetic and logical expression in power with n set to 5

Figure 3.4 shows an updated version of power_n5 from Figure 3.3.
Since all if-expressions depended on constant values, it was possible to
completely eliminate branching from the result.

Figure 3.4: Pruning of statically determined branches for power_n5

Using more advanced optimisation techniques, it is still possible to
reduce branches of case-expressions if only some parts of the condi-
tional are statically determined. If the reader is interested, please refer
to Peyton Jones and Lester (1992) and Boquist (1999).

3.2.3 Unfolding

Unfolding is an important technique that can be used to avoid too many
unnecessary indirections in specialised programs. Unfolding is usually
done at sites where there are function calls and corresponds to inlining
the body of the function that is called at the place where it is called. In
addition to simply inlining the body of the function, unfolding usually
needs to do renaming of local variables to avoid clashes with the external
environment. For a languages with labels, transition compression serves
as a good analogue to unfolding, where a jump to a label is replaced
with the instructions following it. While there are many advantages to
unfolding, and likewise transition compression, if not careful the partial
evaluator can end up in an infinite loop or the resulting code can end up
with exponential size in the case of poorly chosen static variables (Jones,
Gomard, and Sestoft 1993). Therefore, unfolding cannot be seen as a

Chapter 3. Partial evaluation 29

Figure 3.5: The function power_n5 and necessary dependencies after program point optimisation
and constant folding

generally safe technique and must be used with care in places where
there are branching or similar.

Figure 3.5 shows further transformation of the code in Figure 3.4,
after the completion of necessary program point specialisation and con-
stant folding. As can be observed in the figure, there is alot of indirection
in each specialisation of power requiring a new function call for all cases
except when n is set to 0. It is therefore desirable to do unfolding to
improve performance, and doing unfolding for power_n5 brings us back
to Figure 3.2 which is the final form of the optimisation.

3.3 Dividing the static and dynamic parts of a program

In Section 3.1, an argument was made that programs usually contain
both static and dynamic input. A division for a program point is specif-
ically an assignment of a binding-time, either static or dynamic, to
each argument and expression at that point. There are generally two
non-exclusive ways to get the binding-time of variables, one is using a
binding-time analysis and the other is requiring annotation of binding-
time by the user using e.g., two-level syntax (Nielson 1989; Jones, Go-
mard, and Sestoft 1993). In the broadest sense, binding-time analysis is
vaguely similar to type inference while checking whether binding-time
is well-annotated is vaguely similar to type checking.

Chapter 3. Partial evaluation 30

3.3.1 Binding-time analysis

The core idea in a binding-time analysis (BTA) is to infer from given ini-
tial program input, what parts of a program may be executed statically.
For functional programming languages like Idris, there are roughly
four classes of expressions which have different set of binding-time be-
haviour: constants, variables, function application/operators, and con-
ditionals/case analysis.

• Constants are always assumed to be static, independent of whether
they are for primitive types such as integers or strings, or base
constructors of datatypes.

• The binding time for a variable usually depends on the type of
variable and the surrounding environment. If the variable is let-
bound or globally declared it will get the binding-time of the ex-
pression that is assigned to it. For function arguments they are
assumed to be static in the function body, unless they appear dy-
namically in a recursive call. The partial evaluator can only opti-
mise function calls when their arguments are known to be static,
but such requirement is put where the function is called and not
in the body of the function.

• The result of function and operator application is assumed to be
static if all input arguments are static, otherwise it is dynamic. One
must take special care of functions which perform environmental
side-effects, such as those using the IO-monad in Idris, which re-
sult must always be classified as dynamic (since the result can’t be
determined at binding time).

• Conditionals expressions like if and case are considered to be
static if the condition they depend upon is static (since that de-
termines the control flow), otherwise dynamic.

When the BTA is complete, the partial evaluator can use such infor-
mation to create a new residual program. For each function call with
static arguments, it can choose to reduce all dependent static control
flow and expressions; thereby creating a new program that depends
solely on dynamic input.

Chapter 3. Partial evaluation 31

3.3.2 Two-level syntax

Another approach to state binding-time of an expression is to allow
the user to annotate programs using two-level syntax. This approach
is used in Jones, Gomard, and Sestoft (1993), but is also available
for popular programming languages such as OCaml (Taha 2004) and
Java (Westbrook et al. 2010). The core idea behind two-level syntax is
to provide static version of available expressions such as control struc-
tures, application and lambda abstractions in addition to the dynamic
versions. Two-level expressions that are static are often presented as un-
derlined versions of their dynamic counterparts (e.g., if), and usually an
operator is used to distinguish between static and dynamic application
such as $ or @. In order to allow embedding of static expressions inside
dynamic values a built-in annotation lift is usually provided.

Figure 3.6: Two-level syntax annotated version of power function, where underlined operations
are static

Figure 3.6 shows an annotated version of power where n is assumed
to be provided statically. The annotation shows what will be reduced
after a value for n is provided, and as can be seen in the specialised
version (see Figure 3.2) there are no traces left of expression marked as
static in the residual program. If n is to be provided at runtime, it is
usually possible to forget the binding-time annotations and execute all
of power dynamically.

3.4 Constructor specialisation

The previous sections focused mostly on partial evaluation as a way of
optimising code, however Mogensen (1993) and Dussart, Bevers, and

Chapter 3. Partial evaluation 32

De Vlaminck (1995) suggest that partial evaluation is also a useful tech-
nique to optimise data. The core idea is to specialise constructors in
the same vein as specialising functions, or rather specifically, create new
constructors as alternatives of algebraic datatypes where the statically
provided input is fixed (or perhaps completely erased).

3.4.1 Example: Serialisation to S-expressions

Assume there is a program that serialises an association list to an S-
expression and is specialised with regards to a specific schema where
it is either the name and age of a person or the name of a department.
Figure 3.7 shows how a reasonable result could look like after using
ordinary partial evaluation techniques.

Figure 3.7: A program for serialisation serialize, specialised using classic techniques with re-
gards to a specific schema

There are however still some drawbacks with such program: it
requires pattern matching on nested constructors, and does multiple
string comparisons, both of which are potentially very time consum-
ing. Yet, much of the data is statically specified, so it seems that there
is still room for improvement. Luckily, constructor specialisation per-
mits specialisation of data by creating suitable constructors in a suit-
able datatype. Figure 3.8 shows how new constructors are created in
a datatype Schema such that all static data is eliminated, and two suit-
able constructors are created: Person and Department 1. After constructor
specialisation, now the only comparison necessary is comparing tags of
datatypes, something which should be much more efficient than the old
solution.

1For ease of reading, the naming is prettified compared to what automated con-
structor specialisation would generate

Chapter 3. Partial evaluation 33

Figure 3.8: A constructor specialised version of serialize

3.4.2 Algorithm for specialising constructors

Dussart, Bevers, and De Vlaminck (1995) presents a step-by-step algo-
rithm for performing constructor specialisation that has multiple ad-
vantages compared to the original one presented in Mogensen (1993).
One advantage is that it specialises constructors in a polyvariant fash-
ion, which means that specialisation of one datatype can create multiple
new datatypes. Another advantage is that it only requires one pass for
calculating the fix-point calculations necessary in order to create new
suitable types. The algorithm consists of three phases: finding a min-
imal pattern that describes the occurrences of constructors with static
values, generating the necessary code operating on such values and fi-
nally creating suitable datatypes to hold the specialised constructors.

A grammar of datatypes The first phase of the algorithm is to find a
possibly recursive pattern or grammar that describes what particular sets
of constructors occur in the same expression at given program points.
For the example presented in Figure 3.7, the final grammar would look
like something displayed in Example 2 (in BNF style notation).

Example 2
〈string〉 ::= . . .

〈schema〉 ::= [(”name”, 〈string〉), (”age”, 〈string〉)]
| [(”department”, 〈string〉)]

Chapter 3. Partial evaluation 34

The grammar is extracted by analysing the code structure for where
data is constructed and suitably combining such data, e.g. having al-
ternatives in the grammar where there are case-expressions. To avoid
non-termination while partially evaluating, the analysis tries to gener-
alise (that is specify as dynamic) places where there occur recursive ref-
erences to the same datatype. The effect of that is that non-terminals
in the grammar might be defined recursively, which closely mimics the
structure of inductive datatypes. Following extraction of the grammar,
fix-point computation techniques inspired by Jones and Mycroft (1986)
are used to find a minimal function graph that depends on such gram-
mar.

Code generation The second phase uses the minimal function graph
found in the first one to construct specialised versions of functions. This
happens by traversing the graph and specialising each function as nor-
mal, recursively rebuilding expressions from specialised versions. case-
expressions are handled specially during code generation in order to
accommodate the specialised datatypes, and therefore they are restruc-
tured, adding new branches, such that they fit the extracted grammar.

Defining suitable types The final phase is to group the newly gener-
ated specialised constructors into suitable type definitions. This is done
in order for the residual program to be valid (type correct) and the com-
piler can perform other datatype optimisations. The process presented
is simple: it starts with all constructors being in their own datatype, and
merges datatype as necessary when a program depends on values from
either datatype.

Chapter 4

Levitating Idris

4.1 Creating descriptions from ordinary datatype declarations

The description datatype Desc mentioned in Chapter 2 provides the nec-
essary plumbing to perform generic programming. However, creating
described types required a lot of heavy encoding; requiring labels, de-
scriptions and aliases to be manually written out using the provided
low-level constructs. It would be better if the compiler could generate
the necessary descriptions and aliases from ordinary datatype declara-
tions since that would provide the powerful generic constructs without
sacrificing the immediate readability of how the datatype is structured.
This section highlights my effort on extending the Idris language with
constructs to make it simpler to work with described types.

4.1.1 High-level overview

To make it easier to use described types in Idris, I have added three
new language constructs: one annotation on datatypes %described and
two built-in operations labels_for and desc_for. The %described an-
notation has to appear prior to a datatype declaration (see Figure 4.1),
and specifies that the compiler should generate the relevant constructs
for working with described types. The constructs that are generated are
similar in style to the ones presented in Sections 2.1.2–2.2.2, and repre-
sent the constructor labels of type CEnum for the datatype, the description
of type TaggedDesc for the datatype, an alias for the described version of
the datatype and relevant aliases for its constructors.

Chapter 4. Levitating Idris 36

Figure 4.1: An annotation %described for generating descriptions from declarations

The labels_for operation provides the generated constructor labels
for a particular datatype. For example, to access the generated version
of VecCtors from Figure 2.10b, one must use labels_for Vec. Similarly
desc_for is used to access the generated description for a datatype, e.g.,
desc_for Vec returns the equivalent value of VecDesc from Figure 2.15.
The type and constructor aliases are chosen to match the signature and
name of the datatype to be described, similarly to how it was done in
Section 2.2.2.

4.1.2 Algorithms for generation

When a user asks the compiler to generate relevant functions for work-
ing with described types (using %described), then the compiler generates
four types of functions: one representing the constructor labels of the
datatype, one representing the description of the datatype, one repre-
senting a type alias based on the description, and, for each constructor
of the datatype, a function that constructs an isomorphic value of the
described type. The following paragraphs describe informally how each
of these types of functions are generated from the perspective of the
compiler. The main part of the Haskell function that generates these
functions can be seen in Appendix A.1

Generation of labels

The first part of what is generated is a value containing a list of all
the constructor names of the target datatype. Since all the constructor
names are represented internally as strings by the compiler, this step
simply involves creating a new clause of type CEnum and then assigning
to it the Idris representation of a list where all the constructor names are
converted to string literals.

1Due to time constraints, the current version of the function only supports
datatypes without parameters and indices.

Chapter 4. Levitating Idris 37

Generation of descriptions

The second part of what is generated is a value containing the descrip-
tion of the target described datatype. Algorithm 1 works by traversing
the Idris Abstract Syntax Tree (AST), finally producing a new declara-
tion which contains the description.

Algorithm 1
Generating descriptions for datatypes

1. Given a division of parameters xj and indices yk create a fitting
type signature for the description

a) For parameters, quantify those over the whole description
value

b) For indices, they are first “uncurried” in a dependent pair,
and then the whole dependent pair is passed to the tagged
description type TaggedDesc as index

That is, for a datatype
D:(x1:a1)...(xn:an) -> (y1:i1)...(yn:in) -> Type the
signature of the corresponding description becomes
(x1:a1) -> ... -> (xn:an)

-> TaggedDesc (labels_for D) (y1:i1**...**yn:in) where aj is
the type of a parameter and ik is the type of an index

2. Create a fitting clause for the description where all parameters
x1...xn are available as arguments

3. To assign a value to the clause, calculate the value conforming to
the π type for the description and apply switchDesc to the result

a) To calculate the value conforming to π type for the datatype,
iterate through the constructors such that for each constructor
cj:

i. Create a new pair where the first component is the de-
scription for cj and the second component is the descrip-
tions for the rest of the constructors ending with ()

ii. To calculate the description for cj, iterate through all its
arguments:

Chapter 4. Levitating Idris 38

A. If the argument is recursive, use the relevant construc-
tor for recursion, either Rec or HRec, and apply it to the
index values “uncurried” in a dependent pair
For example, for an argument D x1 ... xn y1 ... yn -> ...

use Rec (y1**...**yn) ...

B. Otherwise if the argument is not recursive, use Arg

For example, for an argument (x:A) -> ... use
Arg A (\x=>...)

C. Finally, when there are no arguments left use Ret ap-
plying it to the expected indices similar how to it was
done for recursive arguments

After the description is generated it is elaborated by the Idris com-
piler to ensure that the generated code is correct. If the description is
elaborated successfully, the user can then access it using the desc_for

operation as described in Section 4.1.1.

Generation of aliases

The generation of a type alias for a datatype D is simple. First, cre-
ate a new declaration with the same name D and type signature of
the datatype. Then, the result of D is TData applied to the descrip-
tion for that datatype desc_for D, with the parameters and indices
adjusted to fit the expected form. That is, the values of the pa-
rameters must be provided to the description to get a value of type
TaggedDesc (labels_for D) (y1:i1**...**yn:in). Then TData is applied
to that value in addition to the values of the indices which are packed
together in a dependent pair yielding a value of type Type as required.

Generating constructor aliases requires a bit more effort than with
type aliases, but still follows a step-by-step process. The first thing to
do is to enumerate all constructors, incrementally assigning each one a
number (starting from 0) which is used to calculate the corresponding
Tag value. Similarly to how type aliases were generated, a new declara-
tion is then created for each constructor C with the corresponding name
C and type signature. The only difference is that recursive arguments
in the type signature are changed to use the described version of the
datatype using the generated type alias. The result of D is the appli-
cation of Con to an expression formed of right-nested dependent pairs

Chapter 4. Levitating Idris 39

that represent the synthesised version of the description for the datatype
of C. That is, the nested dependent pairs contain the constructor label,
followed by the constructor tag which is calculated from the assigned
number, then followed by the arguments of the constructor and finally
ending with the value Refl.

4.2 Parametric extension to descriptions

While it was possible to describe parametrised datatypes using the de-
scription presented in Chapter 2, it was not possible to distinguish be-
tween values of parameters and other kinds of values after instantiating
the parameter. Therefore, some of the algorithms which depend upon
the knowledge of where a particular parameter is, such as the functo-
rial map, cannot be implemented in a generic fashion. Since it would
be desirable to implement such algorithms, a suitable description which
has a built-in encoding of parameters must be created. Section 4.2.1
investigates some of the existing notions of what parameters are, and
Section 4.2.2 shows a new description which supports the parametric
notion of parameters.

4.2.1 The parametricity of parameters

What is a parameter? In an environment with dependent types, this sim-
ple question can lead to more answers than bargained for. While almost
all notions agree that the type Vec a n is parametrised by a and indexed
by n, there has been seemingly less agreement on what a parameter is in
general. The issue is probably due to the different things that different
kinds of parameters are used for, which overloads the word parameter. I
will in the following sections present some definitions of what a param-
eter actually is, explain the rationale behind each one and show where
they differ.

Parameters as eliminator quantifiers

One notion of a parameter is the one presented by Dybjer (1997), and im-
plemented in Idris (Brady 2013). The notion is defined in terms of how
a parameter appears in the elimination rule for a particular datatype,
where it is expected that parameters appear first in the type signature
such that they are quantified over the complete elimination rule.

Chapter 4. Levitating Idris 40

Figure 4.2: Elimination rule for Vec

Since parameters are quantified over the elimination rule, it is en-
sured that they are constant relative to the property to be eliminated,
i.e., they do not change depending on the value that may be provided as
scrutinee. Figure 4.2 shows the elimination rule for Vec, where it can be
observed that a is quantified over the whole expression and thus consid-
ered to be a parameter, while n changes in the property to be eliminated
prop and is therefore considered an index.

A restriction that is necessary to ensure that parameters are quanti-
fied correctly in the elimination rule, is that the parameter should ap-
pear uniformly in the result type and all of the recursive arguments of a
constructor. This rules out data structures such as the one presented in
Figure 4.3 to be considered having any parameters in this system, since
the type argument (a,a) to the recursive argument of Cons is different
than the a in the rest of the structure.

Parameters as terms with parametricity

Another notion of a parameter which is presented by Bernardy, Jans-
son, and Paterson (2010), is that it is a type argument which exhibits
parametricity (Reynolds 1983; Wadler 1989). A type argument exhibits
parametricity if the same relations in the datatype are satisfied indepen-
dently of which value is provided; that is, one should not be able to
inspect or constrain the value of a parameter (e.g., using propositional
equality). Figure 4.3 shows a nested datatype (Bird and Meertens 1998)
NList, which is parametric even though a does not appear uniformly in
the datatype declaration. The reason that a is still considered parametric,
is that the recursive argument uses functorial composition. With functorial
composition, recursive arguments can use parameters in a non-uniform
fashion as long as it does not change parametricity and preserves the ex-
pected relations. In the NList example, the NList (a,a) argument can be

Chapter 4. Levitating Idris 41

seen as a composition of NList with the homogenous pair type \p=>(p,p)

which itself satisfies the necessary parametricity requirements.

Figure 4.3: The nested datatype NList

Parametricity of type arguments is necessary to correctly implement
certain useful declarative functions, such as those that are methods of
the Functor, Traversable and Foldable type classes from Haskell. If con-
straints were made based on the type argument of the datatype, it would
not be possible to satisfy the associated laws of these type classes and
possibly not even provide an implementation that can type check.

Parameters as uniform indices

The last notion of a parameter is the one used in Agda (Norell 2009)
which only requires that parameters are uniform in the resulting type of
constructors. This allows the creation of more expressive datatypes, and
can encompass both parametric parameters and parameters which are
quantified uniformly over eliminators; however, it does not ensure either
of these properties. While this provides more freedom to decide how to
structure datatypes, it makes it harder to see what correspondence there
is between a parameter and the semantic properties it imposes.

Figure 4.4: Alternative definition of Vec using equality constraints

For example, Figure 4.4 shows a datatype where both a and n are
uniform in the result and which could accepted as a Norell-style param-
eter. However, the arguments in this definition are neither parametric
nor uniform and therefore do not fit into the other notions of parame-
ters.

Chapter 4. Levitating Idris 42

4.2.2 Parametrically extending the description

One suggestion on how to ensure the parametricity of parameters was
made by Bernardy (“A theory of parametric polymorphism and an ap-
plication”). It was suggested that whenever a parameter was bound and
parametricity was needed, one could provide an additional argument; a
witness which proved that the parameter was parametric. However such
suggestion could be hard to work with in practical generic program-
ming and instead this section will focus on providing an encoding that
is conservative in a way that disallows non-parametric use of parameters
but is still able to express many interesting datatypes.

Explicit parameters

Figure 4.5: A description for parametrised types

Figure 4.5 presents a description 2 akin to the one presented in Fig-
ure 2.2 except a new constructor Par—inspired by an encoding in Benke,
Dybjer, and Jansson (2003)—is added. The constructor Par represents an
argument of the provided parameter in the datatype to be described.

Figure 4.6: Synthesising an ordinary type from ParDesc

To convert the newly presented description to an ordinary datatype
a suitable SynthesisePar function is declared. The function looks mostly

2HRec is omitted for presentation purposes, but can be added in the same style as
presented in Chapter 2.

Chapter 4. Levitating Idris 43

the same as the one presented in Chapter 2, however the described type
is now of type Type -> Type and there is an additional clause for Par.
The clause for Par produces a dependent pair similar to most other
clauses, where the first component has to be an argument of the pro-
vided parameter as expected and the second component is the type
synthesised from the rest of the description. Since it is not possible to
depend on the type nor values of parameters in the presented encoding,
parametricity is ensured by construction. In return, some expression
power is lost since it is not possible to have complex arguments that use
these parameters.

Supporting functorial composition

In Section 4.2.1 it was stated that parameters in nested datatypes were
parametric because they were composed in a functorial fashion. There-
fore, it would be desirable to add such ability to the presented descrip-
tion datatype and thereby increase the expressiveness.

Figure 4.7 shows the addition of the constructor CompRec which rep-
resents a nested recursive argument of a datatype. The first argument
of the constructor f is the type to be functorially composed onto the
parameter, and must therefore be a function that accepts the parame-
ter and returns a type. To ensure that f acts functorially, an additional
argument ffunctor must be given. This variable ffunctor provides the
Functor type class instance for f, and uses the built-in type resolution
mechanism of Idris to automatically find that instance. Finally the last
argument is the rest of the description for the datatype to be described.

Figure 4.7: Adding support for describing functorial composition

As an example of a description for a nested datatype, please take
a look at Figure 4.8. The figure shows the description for NList from
Figure 4.3, and the most interesting part is the application of CompRec. In
this context it is applied to a functor PairP, which represents the same
type as \p=>(p,p) from Section 4.2.1. To type check this application of
CompRec there must be a Functor instance for PairP, however it can be
left out since Idris can resolve it implicitly.

Chapter 4. Levitating Idris 44

Figure 4.8: Described version of NList

Converting CompRec to an ordinary type is mostly similar to convert-
ing ordinary recursive arguments Rec (see Figure 4.9). The only differ-
ence is that f must be applied to the parameter first before applying
the described version of the type. Here, it is perhaps clearest why such
operation is called functorial composition, since x (f a) is equivalent to
(x . f) a which uses the ordinary function composition operator “.”.

Figure 4.9: Transforming CompRec to a type

Conversion to ordinary descriptions

Descriptions for parametrised datatypes can be converted to ordinary
description using a simple step-by-step process (see Figure 4.10). The
result type must be indexed by Type, because recursion expressed by
CompRec is not uniform and therefore can’t be quantified uniformly over
the whole description. Since the converted description would hold the
same data as the provided input description, it allows generic descrip-
tions written for ordinary descriptions to be reused. In fact, converting
the description and then performing synthesis should yield isomorphic
data, which means that Synthesise only needs to be implemented for
ordinary descriptions.

While ParDesc and Desc were presented as two separate datatypes
for readability purposes, they can be in fact combined. The only thing
that adds complexity is that the presence or absence of parameters must

Chapter 4. Levitating Idris 45

Figure 4.10: Converting ParDesc to ordinary indexed Desc

be accounted for at all stages, and further generalisation towards arity-
generic programming requires some advanced fiddling with the type
system.

Chapter 5

Practical examples

5.1 Generic algorithms for deriving type class instances

5.1.1 Specifying the necessary constraints

For many type classes, implementing them for a complex datatype
sometimes requires an implementation of the type class for its parts.
For example, to pretty print a list of items it is required that there is a
way to print each individual element.

Figure 5.1: A function that calculates type class constraints for a single parameter type class

Figure 5.1 shows a function Constraints1 that can be used to calcu-
late type class constraints needed to have an instance of a type class
class (which takes a simple parameter of type Type) for a datatype D,
given the description for D. The function works by iterating over the
description type and specifies that each external data member with de-
scription Arg must have an instance of the provided type class. The only
other interesting case is HRec, where the false type _|_ is required. The
false type makes it impossible to fulfil the constraints for a datatype
using HRec, and is used intentionally to avoid implementing algorithms
using descriptions of that form. This is because it is generally hard to

Chapter 5. Practical examples 47

implement arbitrary algorithms such as decidable equality on functions,
of which HRec is a representative.

5.1.2 Pretty printing

One of the most commonly used and automatically derived operations
on datatypes is pretty printing. Therefore, this function is suitable as an
introductory example of a generic algorithm using our implementation
of descriptions.

Figure 5.2: Generically pretty printing a described type

An algorithm for generic pretty printing gshow is given in Figure 5.2,
and clearly follows the informal algorithm presented in Example 1. The
type signature of gshow might look a bit daunting at first, but the only
major difference from ordinary pretty printing is that it requires not just
the data x but also the associated description d and some constraints
on its subcomponents constraints to be able to pretty print them. The
function first prints the name of the input constructor, and then calls
a function gshowd which pretty prints the individual constructor argu-
ments according to the provided description.

Figure 5.3: Iterating through the description and pretty printing individual components

Chapter 5. Practical examples 48

Function gshowd in Figure 5.3 iterates through the arguments of the
input constructor. If the end of the constructor (having description Ret)
is reached, the empty string is printed. If it is a recursive argument, the
generic show gshow is called again with the description for the whole
datatype, parenthesised if necessary; then the rest of the constructor
arguments are printed. Otherwise if it is an ordinary argument, the
associated show method is called using the instance provided from the
constraints, again parenthesised if necessary, and then the rest of the
constructor arguments are printed. Finally, if a higher-order recursive
argument is met it is dismissed using absurd since it should not be pos-
sible to reach this case because the constraints require a value of type
|.

Example: Implementing Show for the described type Pair

As an example of how to use the generic pretty print function gshow to
implement the show method of Show type class for the described type
Pair, see Figure 5.4. The call to gshow is passed the description PairDesc

and the necessary constraints pairShowConstrs defined in Figure 5.5. To
create the constraints structure, one simply has to create a tuple to
match the type required by Constraints1 and then call %instance the
right places. The %instance expression is evaluated at compile time, and
allows Idris to perform type class resolution returning the associated
instance for the target type class.

Figure 5.4: Creating a Show instance for Pair using the generic gshow

The Show constraints for Pair are easy to create, and are almost on
the verge of being boilerplate. In fact calculating the constraints for
other single-parameter type classes have almost the exact same struc-
ture. However, Idris cannot do type class resolution for any arbitrary
type class c, and therefore it is impossible to define a function that cal-
culates these constraints (since it would not be able to type check).

There could be two solutions to this problem: one would be to create
a macro system for Idris which only type checks the expression after it
is instantiated with the right type class, and another would be to create
a suitable tactic that calculates such constraints at compile time when

Chapter 5. Practical examples 49

Figure 5.5: Constraints necessary to implement Show for Pair

needed. Since these solutions would require considerable effort beyond
the scope of this project, implementing any of them is considered possi-
ble future work.

5.1.3 Decidable equality

Something which is a bit more interesting to do generically is decid-
able equality, since that usually requires handling a quadratic number
of cases relative to the number of constructors, in addition to writing a
significant number of associated lemmas. However, before implement-
ing decidable equality for described types, I will start by implementing
it for Tag (recall from Figure 2.11) to make it easier for the user to satisfy
the necessary constraints.

Figure 5.6: Lemma specifying that TZ is not equal to TS

To implement decidable equality for Tag, a couple of lemmas are
necessary. The first necessary lemma lemma_tz_not_ts is displayed in
Figure 5.6 which shows that the different constructors of Tag, namely TZ

and TS are different.

Figure 5.7: Lemma proving the injectivity of TS

Chapter 5. Practical examples 50

The second necessary lemma to prove is the injectivity of the con-
structor TS (see Figure 5.7). That is, if given two values of constructor TS

which are equal, then it is possible to show that their inner arguments
of type Tag are equal.

Figure 5.8: DecEq instance for Tag

Given the necessary lemmas, it should now be possible to imple-
ment the DecEq instance for Tag. The cases are straightforward: if both
constructors are TZ then they are always equal, if they differ then they
are not equal and the lemma_tz_not_ts (or its symmetric version) is used
as evidence, and finally if both constructors are TS then they are equal
if their inner tags are equal, otherwise they are not and the injectivity
lemma is used to compose the proof.

Now that there is a suitable implementation of decidable equality
for the tags, it is possible to implement the generic version of decidable
equality. Similarly to the implementation for tags, a few injectivity lem-
mas are also needed for the generic version of decidable equality: one
for the injectivity of Con, and two for the injectivity of dependent pairs
(which is the type that Synthesise converts most descriptions to).

Figure 5.9: Lemma proving that Con is injective

The injectivity lemma for Con is displayed in Figure 5.9. It shows that
given that two described types of type Data are equal, then the contained
data must be equal too.

The injectivity lemmas for dependent pairs are displayed in Fig-
ure 5.10 and Figure 5.11. The first lemma states that given that two

Chapter 5. Practical examples 51

Figure 5.10: Injectivity lemma for the first component of dependent pairs

Figure 5.11: Injectivity lemma for the second component of dependent pairs

dependent pairs are equal, then their first components are equal. The
second lemma states the same, but for the second components instead.

The implementation of generic decidable equality is displayed in Fig-
ure 5.12. The type signature is a similar style to the one for generic pretty
printing, and requires both the description and necessary instances of
decidable equality for the subcomponents of the datatype. The imple-
mentation is defined such that two described types constructed with
Con are equal, if their individual data components (including construc-
tor tag) are equal. Otherwise if the individual data components are not
equal, then the injectivity lemma for Con is composed with the counter-
proof to be used as a new counter-proof for inequality.

Figure 5.12: Generic implementation of decidable equality DecEq

To check whether the individual components are equal or not, the
function gdecEqd is used, which takes as argument the original descrip-
tion and constraints (to use for recursive calls) in addition to the de-
scription and constraints which need to be iterated. The type signature
for gdecEqd is displayed in Figure 5.13.

Chapter 5. Practical examples 52

Figure 5.13: The type signature of gdecEqd

If the end of the description is reached (i.e., having the description
Ret), then two values are always considered to be equal. The clause for
gdecEqd in the case of Ret is displayed in Figure 5.14.

Figure 5.14: Checking that two described types with description Ret are equal

Probably the most interesting case is displayed in Figure 5.15 and is
when it is an argument that is described (i.e., Arg). There are two things
that needs to be checked, the equality of argument values themselves
and the equality of the rest of the described type. To check whether the
values of the provided arguments are equal, decEq is called with the pro-
vided type class instance from the constraints deceqa. If the values are
equal then it is possible to proceed checking the rest of the described
type, otherwise the lemma_fst_injective lemma is used to compose a
counter-proof. If the rest of the described type is equal then an equal-
ity proof can be provided, otherwise the lemma_snd_injective lemma is
used to compose a counter-proof.

Figure 5.15: Decidable equality for described types with description Arg

The case of recursive arguments (i.e., Rec) is similar to the case of
ordinary arguments (see Figure 5.16). Since the equality of the recursive
argument is independent of the equality of rest of the described type,
both equalities can be checked at the same time. To check the equality

Chapter 5. Practical examples 53

of the recursive arguments gdecEq is called again with the description
for the whole type and associated constraints, in addition to the values
of the recursive arguments. If both the recursive arguments and the rest
of the described type are equal than the result is that the data is equal,
otherwise a contraproof is composed using the necessary lemma.

Figure 5.16: Decidable equality for described types with description Rec

Finally, for described types with description HRec, absurd is used to
dismiss the required implementation since the constraints are not sat-
isfiable similar to how it was dismissed for generic pretty printing (see
Figure 5.17).

Figure 5.17: Decidable equality for described types with description HRec

Similarly to how a Show instance was implemented using gshow, Fig-
ure 5.18 shows how to implement a DecEq instance using gdecEq. The
specific DecEq constraints pairDecEqConstrs have exactly the same shape
of definition as for pairShowConstrs from Figure 5.5, the only difference
being that the type signature accepts DecEq instead of Show.

Figure 5.18: Implementing the DecEq type class for Pair

Chapter 5. Practical examples 54

5.1.4 Functorial mapping

One interesting generic algorithm that would not work on described
types just using Desc is the generic map function, since it requires an
encoding of parameters. Therefore, the algorithm is implemented using
the version extended with parameters ParDesc. The actual implementa-
tion of generic map gmapp is displayed in Figure 5.19, and simply says
that mapping a described type is simply the same as mapping its indi-
vidual data components using gmappd.

Figure 5.19: Generic map

The function used to map a function on the individual components
gmappd is presented in Figure 5.20. The implementation is straightfor-
ward and mostly iterates through the structure applying the generic
mapping functions where possible, and the only two interesting cases
are the ones for the value of the parameter type and for the functori-
ally composed recursion. When a parameter value (described by Par) is
met, then the function to be mapped f is simply applied to that param-
eter and the mapping continues on the rest of the described type. For
the functorially composed recursive arguments (described by CompRec),
there are a couple of steps to be taken. First, a mapping function
map @{mapc} f for the elements of the composed type is created by calling
the associated Functor instance mapc for the composed functor g, which
then has the type g a -> g b. Thereafter, this mapping function has the
right type to be provided to the recursive call of gmapp and the recursive
constructor argument can be mapped. Finally, it is possible to map the
rest of the described type.

Figure 5.20: Generically mapping the data components of a described type

Chapter 5. Practical examples 55

The Functor instance for a type Nested, that is described by NestedPD

from Figure 4.8, is presented in Figure 5.21. The implementation sim-
ply passes the description NestedPD to the generic map function gmapp,
which is enough since that implementation does not require any specific
constraints.

Figure 5.21: Implementing the Functor type class for Nested

5.2 Algorithms with purely generic properties

5.2.1 Generic tag testing

One common pattern in the Idris standard library is to check whether
a variable is of a particular constructor type, e.g., to get the head of a
list xs then isCons xs must be true and to convert a Fin to an integer
using fromInteger then isJust is used to ensure that the conversion is
safe. Such patterns normally require setting up a new function for each
particular constructor, however with the power of generic programming
the pattern can be easily generalised into a function.

Figure 5.22: Generic tag testing

Figure 5.22 shows a function is which can be used for generic con-
structor testing. The function uses the decidable equality on strings and
values of type Tag to test whether a constructor the same tag to the one
provided. An interesting feature of is is that it only requires the name
of a constructor to be provided explicitly and will find the associated
tag using proof search. This is where the way Tag was structured re-
ally shines: Since the name of the constructor to be found and the list of

Chapter 5. Practical examples 56

possible constructors are part of the type signature there is only one cor-
rect solution. Therefore, the proof search will never produce the wrong
result, since that would not be well-typed.

5.2.2 Generic if expression

Another interesting function that could be made generically is a generic
version of the if-expression. Normally the if-expression only works
with conditions of type Bool, however the function gif presented in
Figure 5.23 works with any datatype with at least two constructors. If
the condition provided matches the first constructor of the datatype that
had declared it, then the result is the false branch; otherwise the result
of the function is the true branch.

Figure 5.23: Generic if-expression

5.3 Scrapping your dependently-typed boilerplate is hard

The original purpose of this section was to present how I planned to im-
plement a Uniplate-style (Mitchell and Runciman 2007) framework, as
an example of how diverse the presented generic encoding is. However,
I found out while trying to implement the framework that there was no
straightforward solution in a dependent types setting. Instead, I will
dedicate this section to presenting an informal explanation of the chal-
lenges that arise when trying to implement such framework. Please note
that the Uniplate-related figures presented in this section are translated
from Haskell to Idris.

5.3.1 Uniplate in 5 minutes

The goal of Uniplate and other Scrap Your Boilerplate-style (Lämmel
and Peyton Jones 2003) frameworks is to present practical operations
that permit generic traversal of datatypes. Specifically, these types of

Chapter 5. Practical examples 57

frameworks provide operations that are type directed, instead of fo-
cusing on particular data elements. For example, a Uniplate operation
could be to extract all expressions from some given input statement,
compared to ordinary functions which would focus on working with
particular elements of a statement such as the condition expression and
two branches of an if-statement. This allows many operations which
often need to traverse deeply nested structures such as ASTs, to be suc-
cinctly written since only the necessary parts can be referred to.

While Uniplate provides a plethora of functions, there are two partic-
ularly interesting ones whose type signature is displayed in Figure 5.24.
The function universeBi allows the extraction of all elements of a target
type to, from input data of the source type from. Complementarily, the
function transformBi allows lifting of a function that homogeneously
maps elements of a target type to, to a function that homogeneously
maps elements of the source type from. The type signature of these
functions require that there exists an instance of Biplate from the source
type from to the target type to.

Figure 5.24: A couple of the most interesting functions for Uniplate

Figure 5.25: The Biplate type class

The interface for the Biplate type class is presented in Figure 5.25.
One constraint on the Biplate type class is that the target type to must
implement another type class Uniplate. The type class Uniplate pro-
vides a function uniplate which is similar to the biplate function that
is provided by Biplate except the target datatype to and the source
datatype from are restricted to be the same. The signature of the biplate

function states that given input data of the source type from, then it
should be possible to extract a list of the elements of the target type to,
and given a list of new values with the same length it should be possible
to create new data which conforms to the source type from. The whole
interface provides a simple way to retrieve and create new elements for
simple datatypes.

Chapter 5. Practical examples 58

Example: Modelling blog posts

One place where something like Uniplate could be useful is when work-
ing with structured data models. For example, Figure 5.26 shows list of
datatype declarations which represent a simplified model of blog posts.
In that model a blog post is either a single blog post with a title and a
publication date, or a summarising blog post that aggregates a series of
other posts. Therefore in this model, blog posts form a tree-like struc-
ture.

Figure 5.26: A simplified model over blog-posts

Figure 5.27 shows a couple of interesting operations on the blog post
model, which utilises the Uniplate functions from Figure 5.24. The func-
tion timestamps would extract all creation dates that exist in the input
blog post using universeBi, no matter how aggregated the blog posts
are. Similarly, the function capitaliseTitles capitalises all the titles of
the input blog posts, by applying transformBi on a function capitalise

of type Title -> Title.

Figure 5.27: Interesting operations using Uniplate on blog-post model

Usually, the Biplate type class can automatically be derived in
Haskell if a datatype already supports the necessary generic encod-
ing; that is, if it has instances for the Typeable and Data type classes,
which can also be derived. However, it is also possible to manu-
ally implement the necessary instances, and an example of an instance
for Biplate Post Timestamp is displayed in Figure 5.28. Since the Post

datatype has two constructors, there are two cases to handle. The case

Chapter 5. Practical examples 59

for the constructor Single simply extracts the timestamp and returns it
as a singleton list, and when to reconstruct the datatype the constructor
Single is used on the same title as given originally and the newly pro-
vided timestamp. Since Aggregate does not contain any timestamps the
result is the empty list, and the same element as provided as the input
is returned when reconstructing.

Figure 5.28: An instance of Biplate for working with timestamps in blog posts

5.3.2 Automatic deriving

As mentioned in Section 5.3.1, one of the more useful features is the abil-
ity to automatically derive instances for the Uniplate and Biplate type
classes. However, as I will present in this section, doing such thing cor-
rectly in a dependently typed programming language is not completely
obvious. In fact, the Uniplate documentation (Mitchell 2014) already
warns that creating instances (even manually, not just by deriving) for
polymorphic types could already produce incorrect results:

When defining polymorphic instances, be carefully to men-
tion all potential children. Consider Biplate Int (Int, a) -
this instance cannot be correct because it will fail to return
both Int values on (Int, Int). There are some legitimate
polymorphic instances, such as Biplate a [a] and Biplate a a,
but take care to avoid overlapping instances.

The type casing challenge

The first challenge that arises when trying to generically derive in-
stances, is that pattern matching on types is needed in order to iden-
tify which elements belong to the target type. However, Idris does not

Chapter 5. Practical examples 60

permit pattern matching on types for two reasons: it would break para-
metricity and it would significantly hurt runtime performance.

Therefore, something like Typeable for Haskell is needed in order to
recover type information at compile time. Traditionally, the Universe
pattern (Altenkirch, McBride, and Morris 2007) is used in dependently
typed languages as an analogue to provide an internal encoding of a
limited set of types that can be matched on. This is done by having a
set of constructors called codes in some type U to represent these types,
and then an interpretation function El which takes elements of U and
translates them to actual types. However, this can be problematic when
types need to depend on values, since dependencies must be encoded as
functions from interpreted codes to other codes. Since it is not possible
to pattern match the interpretation of codes which are actual types, it is
not usually possible to recover the correct form of the type information
at runtime. In summary, the author has not been able to find a good
encoding for an external way to do type casing for dependent types,
and there are both proof theoretic and performance-related problems if
such system is included in the core language.

Distinguishing between the kind of data

Assuming it was possible to have a way to do something similar to type
casing, there are still a challenge left regarding automatic deriving of
relevant Uniplate instances. In dependently-typed programming lan-
guages, terms are not just used to contain data used at runtime, but
sometimes they also contain data that is needed at type level such as
when indexing datatypes. The challenge occurs when the two kinds of
data intermix in datatypes when trying to derive the relevant Biplate

and Uniplate instances.
For example, in the type Vec Nat n there are natural numbers used

both as elements and as indices of the datatype. However, it is not
generally possible to distinguish between the Nat element that is used
as index and the Nat member elements, and when trying to extract all
natural numbers in order to implement Biplate (Vec Nat n) Nat it is hard
to only get the relevant member data. Worse yet, it is not possible to
reconstruct new data of type Vec if given an arbitrary Nat which should
act as index, since that would not necessarily fit the definition of the
datatype.

One idea would be to try to completely avoid any data members
which appear at type level, however such solution cannot be generally

Chapter 5. Practical examples 61

applied. As an example see Figure 5.29 which presents a list which en-
forces a less-than ordering on the elements. In such datatype, there is no
difference between the data members and the members used as indices.
If the data members were omitted, then there is nothing interesting left
to operate on. In summary, it is hard to do automatic deriving for any
arbitrary indexed datatype and therefore they must be created manually
in applicable cases in order to have a correct implementation.

Figure 5.29: A datatype describing a list with ordered elements

5.3.3 Generic traversal

Even if assuming that there somehow is a relevant Biplate instance for
an indexed datatype, there would still be challenges with regards to
generic querying and transformation. If one examines the type signature
of the generic traversal functions universeBi and transformBi, one can
see that they force types to be monomorphic. While there are many
interesting operations that can be achieved on a non-indexed type like
List Nat, the available operations to be done on a monomorphic indexed
type like Vec Nat Z are far less interesting.

Therefore it is desirable that the generic traversal functions can have
polymorphic indices which can change values such that they fit the rel-
evant contained data. Figure 5.30 shows an updated version of these
operations which allow individual elements to have different indices,
and transformations to change the indices. The changes require a mi-
nor update to the Biplate interface such that the target type to has type
ix -> Type instead of just Type.

Given the update interface and a fitting implementation of Biplate,
the universeBi function should work adequately. However, there is
something not completely right about the transformBi function; surely,
it should not be possible to change arbitrary indices of a datatype? Un-
fortunately no, if such a function was allowed the type system would be
inconsistent since it would be possible to break datatype invariants.

Chapter 5. Practical examples 62

Figure 5.30: Updating Uniplate functions to allow changes in the index of the target type

Figure 5.31: An example datatype that contains two vectors, where one has exactly one more
element

For example, Figure 5.31 presents a datatype which contains two
vectors and enforces the constraint that the second vector, must have ex-
actly one element more than the first one. Figure 5.32 presents a simple
function that appends a given input vector to itself. A problem occurs if
a user tries to call transformBi double xs, since such function would try
to double the size of all vectors in the input data xs. The result would be
that both vectors would have twice the length, thus making one of the
vectors having two elements more than the other breaking the invariant
of the datatype.

Figure 5.32: A function that appends a vector to itself

One suggestion to mitigate the problem would be to somehow sepa-
rate actual data from constraints in the transformation, and then check
that the resulting structure still conforms to the necessary invariants.
However, such a solution is hard to generalise into a proper type sig-
nature and also it might not be apparent how such constraints could be
formed. For example the OList displayed in Figure 5.29 seems to be the
best way to enforce an ordering on list elements.

Chapter 6

Optimising Idris for flight

The generic encoding of datatypes via descriptions provided a powerful
and flexible way to implement algorithms once for many datatypes as
displayed in Chapter 5. This could save the programmer the time to im-
plement these algorithms, while at the same time lessen the probability
that a bug is made.

However, the flexibility of the presented encoding comes at a price:
it adds a space overhead to the datatype which is linear to the size of the
constructed data. This can significantly hurt the runtime performance,
and it is therefore desired to find a way to optimise the generated code
such that the presented framework is a viable option to use for realistic
programs. Section 6.1 presents an analysis on how the encoding adds
overhead to the constructed data and which parts could be optimised
away. Section 6.2 presents an extension to the presented description
type that enables erasure of arguments. Finally, Section 6.3 presents an
informal description of a partial evaluation-based algorithm that enables
specialisation of datatypes.

6.1 Analysing the encoding overhead

To examine the overhead which incurs when constructing described
types, the following paragraphs will present a few simple examples of
constructed data from described types and analyse the individual com-
ponents.

Chapter 6. Optimising Idris for flight 64

6.1.1 The price of genericity

The case of informationless data

In the presented description scheme, even simple datatypes become very
complex when encoded as described types. For example, Figure 6.1
represents the described version of the boolean value True. It can be
observed that additional data is required to make it work in a described
context. The constructor Con is required to build a described type, the
label "True" and the dependent tag TS TZ are required to choose the type
of data constructed, Refl is used to enforce restrictions on indices and
all these arguments (of Con) must be wrapped in several dependent pairs
to store the data. This is a stark contrast to simply using True, which
satisfies the required type by definition.

Figure 6.1: The described version of the constructor True from Bool

Another example representing the described version of the vector
[42], is presented in Figure 6.2. The shape of the data is similar to the
shape of the described version of True, in that it uses Con whenever data
needs to be constructed, is immediately followed by the relevant con-
structor label and tag and always ends with Refl after containing the
relevant constructor arguments. Probably, the more interesting part is
the constructor arguments to the described version of Cons which are 0

and 42. Recall from Figure 2.15, that 0 represents the length of the recur-
sive argument and 42 represents data of the parameter type. Usually, the
length of the recursive argument can be erased by Idris (Tejiščák 2014),
since it can be inferred from the rest of the arguments. If it was not
erased the size of the list would be quadratic, since the natural numbers
use a unary representation, and a natural number must appear at every
application of Cons. However, the encoding presented does not make it
possible to represent erasable arguments, and Section 6.2 discusses the
changes that are necessary to achieve this feature.

Since ordinary constructors and their described equivalents are iso-
morphic, the described versions do not strictly contain more informa-
tion. This is because much of the data of a described type is statically
known and not in itself interesting. The only thing that differs is the
form, where the described versions are more suitable to be used with

Chapter 6. Optimising Idris for flight 65

Figure 6.2: The described version of [42] of type Vec Nat 1

generic algorithms. This difference however comes at a price: It requires
storing additional data with increasingly more references, which could
result in a significant performance loss at runtime. It would therefore be
desirable to use partial evaluation techniques when possible, to reduce
the size of the datatypes at runtime, and improve the performance of
dependent algorithms.

It is all in the details

The figures presented in the previous paragraphs do not provide a com-
plete overview of what data there is, because implicit arguments were
not displayed. In fact, it can observed that things like parameter and
index values are usually stored in these implicit arguments.

For example, Figure 6.3 takes a look again at the described version
of True (from Figure 6.1) but this time with the implicit arguments dis-
played. The first thing to notice is that in addition to the other data,
the type of indices, the index value and the description for the whole
type must also be provided as arguments. Additionally, the constructor
tags also contain information about the current label, and the rest of the
possible labels as implicit arguments.

Figure 6.3: The described version of True with implicit arguments displayed

Similarly, Figure 6.4 shows the described version of [42] from Fig-
ure 6.2 with implicit arguments described. A thing to notice is that the
type of indices and the description are provided as arguments for each
application of Con. Looking at these examples, it would seem that the
encoding might prove to carry a bigger overhead than initially assumed.

Luckily, since many of these implicit arguments are inferable from
the type signature, Idris can use various optimisation techniques like

Chapter 6. Optimising Idris for flight 66

Figure 6.4: The described version of [42] with implicit arguments displayed

collapsing (Brady, Mcbride, and Mckinna 2004) and erasure (Tejiščák
2014) so that they do not affect the runtime performance. The data must
however still be checked during elaboration, which makes elaborating
data of described types significantly slower than equivalent construc-
tors, since there are many more arguments that need to be inferred and
checked. Therefore, it is desirable to limit the amount of time used
rechecking the same kind of structure. One solution could be to provide
aliasing functions1 just as the ones presented in Chapter 4, which could
be used when working with specific described types. Thus, for specific
datatypes many arguments need only to be elaborated once for each
alias, instead of every time new data is constructed.

Annotating static data

There are several ways possible to analyse data in order to find the
static parts. For example, it could be possible to use the minimal func-
tion graph based analysis used in Section 3.4. Yet, many of the described
types can be generated from ordinary declarations as presented in Chap-
ter 4, and thus it may be known already at generation time what static
parts there are. Therefore, it might be worthwhile as a heurestic to ex-
amine the generated constructor aliases, and try to identify what static
data might be optimised already at those points.

Constructor aliases for the described version of Vec are displayed in
Figure 6.5, along with annotations to show the static (solid underline)
and erasable (dotted underline) parts of the data. For Nil all the pro-
vided data to Con is static, which makes sense since Nil is usually a
nullary constructor and does not contain any data. The only data that is

1Unfortunately, at present Idris does not support pattern aliases so this would only
work when constructing datatypes

Chapter 6. Optimising Idris for flight 67

Figure 6.5: Annotating the static (underlined) and erasable (dotted underline) parts of the con-
structors for the described version of Vec

not static for Cons is n, x and xs, which is equivalent to the data stored in
the ordinary version of Cons. Since n is inferable from the type signature
of Cons, it would usually be possible for Idris to erase such value. In
summary, there is plenty of room to specialise constructors to remove
static and erasable parts of data already that already exist at the point
where aliases are generated, and perhaps more so if a more elaborate
analysis was performed.

6.2 Preparing descriptions for erasure

In Section 6.1, it was mentioned that it would be desirable if there was
a way to synthesise types with erasable data from descriptions. This
Section presents a few extensions to the description type that enables
the user to exploit erasability as an optimisation technique.

Figure 6.6: An annotation to specify erasure of arguments

Figure 6.6 presents a simple type Erasure which can be used to spec-
ify the erasability of arguments. The constructor None specifies that no
erasure should happen, and the constructor Erasable specifies that an
argument may be erased.

Figure 6.7: Extending the description constructor Arg to support an erasure annotation as argu-
ment

To enable described types to have erasable arguments, the descrip-
tion must be slightly modified. Figure 6.7 shows an updated version of

Chapter 6. Optimising Idris for flight 68

Arg, which has an added first argument requiring an annotation of type
Erasure.

Figure 6.8: A dependent pair type Exists, with the first component being erasable

The next step is to convert described types with description Arg to
ordinary types that satisfy the required properties of the given erasure
annotation. The target type to convert described types with erased ar-
guments to is going to be Exists and is presented in Figure 6.8. The
type Exists is similar to the ordinary dependent pair, except the first
argument of its constructor Evidence is marked to be erasable (by using
. in front of the argument)

Figure 6.9: Synthesising the different versions of Arg, depending on erasure properties

The actual translation of the different kinds of Arg values to types
using Synthesised is displayed in Figure 6.9. The translation of non-
erasable arguments is the same as before, but values having the Erasable

annotation are translated to Exists instead to ensure the correct erasure.

Figure 6.10: Updated version of alias Cons, now using Evidence for storing erasable argument n

Finally, Figure 6.10 shows an updated version of Cons where the
value n can be erased. Notice however, that the resulting value must
use Evidence instead of the ordinary dependent pair constructor when
constructing erasable arguments.

Chapter 6. Optimising Idris for flight 69

6.3 Sketching out an algorithm for specialising described
types

This section will sketch out an algorithm for removing some of the static
data identified in Section 6.1, by utilising the techniques presented in
Chapter 3. The core idea of the algorithm is to exploit the additional in-
formation provided by the powerful dependent type system of Idris, to
eliminate some of the static overhead present in some datatypes. While
this algorithm seems to be usable in the case of specialising described
types, it is not limited to that application and could probably be used
for other kinds of datatypes, e.g., one could imagine specialising Fin 2

to Bool.

6.3.1 Specialisation of static parameters

The first step towards specialising datatypes, is to specialise parame-
ters when they are provided statically. This is done by creating a new
datatype declaration with almost identical definition, except that the pa-
rameters are fixed to the provided values and any recursive argument
refers to the newly specialised datatype.

There a couple of reasons why it is desirable to specialise parameters
but not indices. The first reason is that different branches could have
different index values—like Nil and Cons of Vec—but it would still be
desirable to keep both branches as part of the same type family. The
other reason is that since indices may change, the specialisation process
may not terminate. For example, specialising the Nat index n for any
instance of the type family Vec requires creating an unbounded amount
of datatypes (Vec a 0, Vec a 1, Vec a 2, etc.).

Figure 6.11 shows an example where Data (from Figure 2.17) is spe-
cialised with the type of indices ix set to Nat, and the description d set
to VecD Int. Notice that the Synthesise argument of Con previously ac-
cepted a recursive reference Data (VecD Int) as argument, which must
be changed to refer to the specialised version Data__Vec_Int.

Figure 6.11: Specialising Data with parameter ix having value Nat, and parameter d having value
VecD Int

Chapter 6. Optimising Idris for flight 70

Since some arguments of Synthesise in the constructor Con are pro-
vided statically now, it is possible to normalise the expression. Fig-
ure 6.12 shows the normalised version of Synthesise with regards to the
provided arguments. Notice that it is not possible to further normalise
the Synthesise application on switchDesc, since switchDesc is dependent
on dynamic arguments l and t.

Figure 6.12: Normalising the Synthesise call from Figure 6.11

6.3.2 Unboxing nested references

Taking a value of a dependent pair type as argument may be less op-
timal than simply accepting the arguments directly, since it requires an
additional allocation or box in memory. This does not only increase
the space requirements, but may also hurt runtime performance since it
would require chasing multiple pointers each time the data needs to be
accessed.

One particular technique used to avoid such situation is called un-
boxing (Peyton Jones and Launchbury 1991; Leroy 1997), which is used
to inline references to other datatypes. To unbox a datatype, one takes
each reference to it and replace it by its individual components. For ex-
ample, to unbox a dependent pair (x:a ** b), one takes the arguments
of its constructor—of types a and b a respectively— and uses these as
arguments in the enclosing constructor.

Figure 6.13 shows the unboxing of the nested dependent pair in the
constructor Con. The resulting arguments are the label l, the tag t and
the rest of the description arg.

6.3.3 Trickery applies here

It would seem that after the Section 6.3.2, that all apparent static data
has been eliminated and that we are seemingly stuck in doing further

Chapter 6. Optimising Idris for flight 71

Figure 6.13: Unboxing the dependent pair type argument to ordinary arguments of Con

partial evaluation. However, save some inlining of data not much has
been achieved. As observed in Section 6.1 there is yet still some data
which appears to be static after l and t is provided.

Jones, Gomard, and Sestoft (1993) suggests using a technique called
the trick where dynamically provided data can allow further partial eval-
uation if it is finitely enumerable. This is done by creating a new branch
for each possible value of the enumerable data, and then further par-
tially evaluating each new branch. Then a mechanism is used to select
the correct branch dependent on the value of the enumerable data at
runtime.

Figure 6.14: Splitting constructors based on the different possible values of Tag (with additional
unboxing)

For the presented example in Figure 6.13, the list of possible con-
structors ["Nil","Cons"] is known and so the value t is finitely enu-
merable and by dependency the value l becomes static. The specialised
version using the trick on t, is presented in Figure 6.14 which has two
new constructors representing the branches for the two valid values of
t, namely TZ and TS TZ.

The values displayed between angle quotes are the static data spe-
cialised with their correspondingly assigned values. These values are
not stored at runtime, but may be used by the compiler when specialis-
ing algorithms to substitute if these algorithms are dependent on these

Chapter 6. Optimising Idris for flight 72

values. For example, the generic pretty printing algorithm depends on
knowing the labels and thus requires substituting either "Nil" or "Cons"

where l is used.

6.3.4 Index substitution

The final optimisation step that can be performed on our example, is
to convert simple obvious restrictions on parameters given by proposi-
tional equality to ordinary indices. Figure 6.15 shows such optimisation
where the parameter i has been specialised to the restricted value in
each branch—Z for Con_Nil and S n for Con_Cons—and the correspond-
ing equality arguments has been removed.

Figure 6.15: Eliminating equality restrictions on type arguments, by inlining the expected values
as indices

6.3.5 Expansion in functions

Similarly to the other data-oriented specialisation algorithms presented
in Chapter 3, dependent functions must also be specialised to support
the updated structure. This includes creating new case trees when pat-
tern matching or constructing objects of the specialised type, and then
adjusting the control flow to match the new branches.

As an example of how to specialise functions to support the spe-
cialised datatypes, see Figure 6.16. The figure presents a specialised
version of gshow with regards to the description VecD Int and the rele-
vant constraints. Please notice, that the specialisation could not further
reduce the d and cstrs arguments which represent the description and
constraints for constructor arguments, since these are dependent on the
label and tag variables which are bound dynamically.

In order to be able to use the specialised datatype in gshow, new
branches has to be created which mirrors the branching done using “the

Chapter 6. Optimising Idris for flight 73

Figure 6.16: Specialising gshow with regards to the description VecD Int and its related constraints

trick” on the specialised datatypes. Figure 6.17 shows the specialisa-
tion of gshow from Figure 6.16, where new branches has been created
by enumerating possible values of tag (TZ and TS TZ), similarly to when
specialising Data__Vec_Int. In the figure, two minor non-essential ad-
justments have been made. The first is that it is assumed that gshow

has been updated such that erasable arguments are not pretty printed,
and thus neither is the argument n. The other adjustment is that af-
ter specialising the expression to print the arguments, it gets the form
show @{%instance} x, which has been reduced to simply show x since they
are equivalent.

Figure 6.17: The specialised version of gshow after branching on tag and further applying partial
evaluation techniques

Since the function argument now has the right shape, it is possible
to replace the generic datatype argument with the specialised one. Fig-
ure 6.18 shows an updated version of Figure 6.17, where the different
branches now uses the specialised constructors Con_Nil and Con_Cons

and the concatenation expression has been slightly simplified. Finally,
it can be observed that the finished result looks very similar to how a
manually-written Show instance for Vec Int would have looked like, and
therefore a similar performance characteristic is expected.

Chapter 6. Optimising Idris for flight 74

Figure 6.18: The final specialised version of gshow, using the specialised version of the datatype
Data__Vec_Int

Chapter 7

Discussion

7.1 Related Work

7.1.1 Less is more

During the finishing stages of this project I had discovered a Ph.D. dis-
sertation with some considerable overlap on subject, namely “Less is
more: generic programming theory and practice” by Magalhães 2012 at
Universiteit Utrecht. The main subject of the dissertation was to investi-
gate relevant ways to generically model datatypes in context of Haskell
programming, and how to optimise dependent functions to achieve
good performance.

The theoretical part of the dissertation presented 5 different frame-
works to model datatypes generically both in Agda and in Haskell—
ranging from supporting simple datatypes to datatypes with indices and
nested parameters—and provided a way to map between these models.
In contrast, I had chosen to rely on existing frameworks performing
only some slight modifications, and instead focusing on providing a
well-written tutorial to understand those. As a part of the analysis, Ma-
galhães chose to look at the frameworks from the point of functoriality,
and showed how it was possible to implement Functor in each of those
models. In my work, I also provided a way to implement Functor on
a description that supported nested datatypes, and which was correctly
parametric by construction. In addition, I had provided an analysis on
what different types of definitions there are for parameters in a depen-
dently typed language.

Chapter 7. Discussion 76

Similarly to the work presented in this project, Magalhães had pre-
sented a way to get the generic version of a datatype from ordinary
declarations. That part however, focused mainly on converting ordinary
Haskell datatypes to the encoding presented in the framework, while
this project focused on converting possibly dependent Idris datatypes
to descriptions. Since Haskell does not have dependent types, the en-
coding presented requires multiple datatypes to be combined and as
such is different from the presented description datatype.

The work by Magalhães also includes a wide variety of generic im-
plementations of useful algorithms using Haskells type class mecha-
nism, including the generic version of Show. The generic show in this
project is similar, however it uses an ordinary function on the descrip-
tion (requiring only type class instances for the parts of the datatype).
An implementation of generic decidable equality was presented on an
Agda model by Magalhães, however it only supported semi-decidability.
That is, it used a Maybe-like type, only providing a proof if they were
equal and otherwise providing a Nothing value. In this project, I have
provided a more powerful generic implementation of decidable equal-
ity where either a proof was provided or a contra-proof was provided.
This requires handling a quadratic number of cases instead of linear, in
addition to needing to set up various lemmas, since datatypes can be
non-equal in various ways. Finally, I had presented a couple of purely
generic algorithms which are not trivial to implement outside a power-
ful type system with tactic support like Idris.

Regarding optimisation, Magalhães had designed, implemented and
evaluated an algorithm for optimising generic operations used for de-
riving type classes for Haskell datatypes. The algorithm requires an
isomorphism between a datatype declaration and its equivalent generic
representation, and uses techniques dependent on the isomorphism
such as inlining, free theorem substitution and advanced case elimi-
nation to achieve excellent performance metrics. The work presented
in this report focuses on using another optimisation technique, namely
partial evaluation and specifically constructor specialisation to optimise
described types. While only the design of an algorithm was presented
in this report, the algorithm had a few advantages when working with
more complex described types than the ones presented by Magalhães.
One advantage is that the algorithm is not dependent on whether the
described type was generated from a datatype declaration, or was man-
ually created by the programmer, since the algorithm does not require

Chapter 7. Discussion 77

an isomorphism to an ordinary datatype to exist. Furthermore, the al-
gorithm can specialise any kind of datatype with static parameters and
is not limited to a particular encoding. Another advantage is that the
algorithm would also work with described types which are based on
transformed descriptions, such as the ones based on the free monad
description transformation presented in Chapman et al. (2010) or the
ornamenting structures presented in McBride (2010) and Dagand and
McBride (2012). Since the transformation of descriptions is often done
using calculations on existing datatypes, it can be cumbersome to re-
quire the programmer to provide declarations for each possible instanti-
ation in order to get good performance metrics. Therefore, the algorithm
presented in this paper avoids such requirements, in contrast to the al-
gorithm provided by Magalhães.

7.1.2 Everywhere in dependent types

Section 5.3 discussed the challenges of implementing a SYB-style library
in a language with dependent types that could preserve expected invari-
ants of a datatype. However, in a closed type system with type casing
support, it would be possible to implement a generic traversal function
that alters the result type dependent on the provided transformation
as demonstrated by Diehl (2013). While this provides a simple way to
perform many powerful transformations, it also comes at a price. The
function is not implemented to support general descriptions, it breaks
parametricity, and the output type might not be immediately what is
expected.

7.2 Reflections and Outlook

7.2.1 Usability from the perspective of ordinary programmers

Generic programming using described types is a powerful concept, per-
mitting programmers to write complex programs that works for many
datatypes in a succinct fashion. Naturally, it would be desirable to en-
able ordinary programmers to use such concepts. This is because it
reduces the time taken, avoiding repetitive implementations of an algo-
rithm for specific datatypes, while at the same time reducing the risk of
creating new bugs. However, the state of the current literature is that
it is often written targeting academics, including abstract concepts with

Chapter 7. Discussion 78

extensive use of type theory and complex features of dependent types.
For example, it is not uncommon to find many syntactic short cuts in-
troduced in the literature (Chapman et al. 2010; McBride 2010). While
this is something that makes it easier to write complex expressions, it
comes at the price of making it harder to immediately understand the
underlying concepts for ordinary programmers.

One of my aims was therefore to present a more practical tutorial
(see Chapter 2), focusing on using the existing theory to build an in-
tuition on how descriptions work. Therefore, I had chosen to omit all
but the necessary parts of type theory, and instead focusing on generic
programming as something that relates to the structuring of datatypes. I
had started by analysing how a typical datatype is structured, and then
showed how to convert datatypes to descriptions starting with the sim-
ple () type, then progressing towards more complex indexed types such
as Vec a n. After providing an intuition on how to build descriptions for
commonly used datatypes, I started explaining more complex concepts
such as how to provide an informative encoding of constructor tags and
how to synthesise actual types from provided descriptions. Finally, I
related the presented encoding back to the literature and provided the
motivation on why the encoding was presented in that particular fash-
ion.

Another aim was to make it easy for programmers to use library-
provided generic programs without requiring extensive knowledge on
how descriptions worked. Therefore, I provided a way to generate de-
scriptions from ordinary datatype declarations as presented in Chap-
ter 4. Furhermore, relevant aliases were provided to use these types that
were synthesised from the generated descriptions in order to make it
possible to use these described types with the same ease as using ordi-
nary datatypes.

Chapter 5 provided a few realistic functions to present how it was
possible to do generic programming using described types. These were
meant to serve as an inspiration for the ordinary programmer, on how
to structure commonly used operations in a generic fashion.

Nevertheless, there are still some challenges ahead before generic
programming is viable to become a main stream technique. One chal-
lenge is that the types used in generic programming are very complex,
and it requires considerable effort to understand the type signatures
for even simple operations. This is especially troublesome when dealing
with type errors. Because dependent type systems normalise while elab-

Chapter 7. Discussion 79

orating, type errors are usually more complex and often contains full ex-
pansion of terms, even if abstractions like aliases were used. It is there-
fore important to provide a way to present understandable error mes-
sages in the future. Perhaps, one way could be by collapsing some of the
erroneous terms into higher-level abstractions when possible. Another
way could be to use techniques such as error reflection (Christiansen
2014) to simplify and further explain the error messages. A different
challenge is that it might be hard to comprehend all the details of the
complete encoding of descriptions at first. Even though the complete en-
coding is required to support all the various kinds of datatypes, it might
be beneficial if different “views” of the description could be presented.
This should make it easier to understand essential features, maybe at the
cost of limiting the number of datatypes supported. For example, one
might provide a view that makes generic programming easier for ordi-
nary datatypes by eliding details used for describing indices. Perhaps,
a way to provide such feature could be by having simpler aliases to the
description datatype where the index type was hidden and hardcoded
to ().

7.2.2 Usability from the perspective of library implementers

Described types provide a way to make algorithms that can form the
basis for deriving type class instances. However, the literature is of-
ten scarce on presenting examples in a language that supports practical
features, such as type classes or tactics, like Idris.

Therefore, I aimed to implement a small collection of examples con-
taining commonly used operations in Chapter 5, both in terms of opera-
tions that form the base of type classes like Show and DecEq but also func-
tions that described purely generic properties like is. These examples
were written using an open world assumption, and they thus needed
to interact with the type class resolution mechanism in order to retrieve
the necessary constraints. Examples like is even use the tactics-based
proof search mechanism to find the correct Tag value given a particu-
lar constructors name. This combination of practical features combined
with dependent types, make it simpler for library implementers to pro-
vide implementations of generic operations with easy to use interfaces
without requiring any modification to the compiler.

While it was shown that it was possible to create many interesting
generic algorithms, there were still limitations that were not handled in

Chapter 7. Discussion 80

this project. Chapter 5 discussed the challenges that had risen when
trying to implement a SYB-style generics library, and therefore it would
still be desirable to find an alternative approach to handling generic
traversal on datatypes. Additionally, while the presented descriptions
in Chapter 2 and Chapter 4 were able to handle many kinds of subject
datatypes, they could not handle all of them. In order to be able to
leverage described types as a way to avoid boilerplate for all kinds of
datatypes, additional work would be required to support for complex
type families like the inductive-inductive and inductive-recursive ones.
Finally, future work is required in Idris in order to support higher-order
implicit and default arguments in order to be able to mimic datatype
definitions exactly by described types.

7.2.3 Applicability of optimisations

Generic algorithms would not be of great practical use, if they were or-
ders of magnitude slower than their hand-written counterparts. There-
fore, it is essential that the written generic algorithms get optimised,
and the added overhead eliminated. Unfortunately, most of the exist-
ing literature on descriptions is purely theoretically focused and looks
mostly at how it is possible to increase the expression of such frame-
works. Unlike its Haskell counterparts, the author was not able to find
relevant optimisation techniques aiming at improving the performance
of generic programs in dependently typed programming.

This was the rationale for one of the important aims of this project,
to investigate how it was possible to optimise algorithms that use de-
scribed types. Chapter 6 presented an analysis that described what over-
head was added by encoding datatypes using descriptions, and used
that analysis to present two optimisation techniques. The first tech-
nique added support for erasable arguments in the description, and the
other technique presented was the design of an algorithm to specialise
datatypes. The manual application of these algorithm in the case of the
described version of Vec a n, showed it was possible to achieve a re-
sult that was very close to using hand-written algorithms on ordinary
datatypes.

Since only the design has been sketched out for the presented al-
gorithm, there are still tasks that are left out as future work. One of
these tasks would be to provide an implementation of the designed spe-
cialisation algorithm, and then benchmark the resulting code to com-
pare the performance and code size of optimised generic programs to

Chapter 7. Discussion 81

hand-written ones. Another task would be to investigate what types of
binding-time analyses are effective and if there are any heurestics that
could be used to further improve performance. For example, a static
finitely enumerable parameter should probably not be split if there is
no dependent calculation. Finally, it could be interesting to investigate
how such algorithm could be extended to support polymorphic spe-
cialisation, since polymorphism in dependent type system is usually a
more loose term than in regular type system. Without polymorphic spe-
cialisation, it would not be possible to specialise datatypes with nested
parameters among others, since that would require creating an infinite
series of datatypes (one for each nesting of parameters), similarly to the
case of indices.

Chapter 8

Conclusion

In the Introduction (Chapter 1) I put forth three different goals: to find
and explain a suitable generic representation of datatypes from existing
literature, to show how this representation can be used in practical con-
texts and to perform optimisation such that generic programming is a
viable option in realistic programs.

For the first goal, I had been inspired by the latest research (Chapman
et al. 2010; Dagand 2013; Diehl and Sheard 2014) and made a descrip-
tion for datatypes that is suitable to use in the context of Idris. I had
focused on providing a detailed and peer-oriented tutorial, with a less
steep learning curve than provided by the literature. Furthermore, I
had extended a version of the description datatype to support more ad-
vanced constructs like nested parameters which correctly ensured para-
metricity by construction. Finally, I had provided a way to generate
the necessary constructs to work with described types like constructor
labels, descriptions, and suitable aliases. While there were still minor
usability challenges to overcome, I believe that the presented contribu-
tions should make it easier for programmers inexperienced with generic
programming to leverage the power of described types.

For the second goal, I had provided a fully-fledged generic imple-
mentation of three commonly used algorithms: pretty printing, decid-
able equality and functorial map. Additionally, I had abstracted com-
monly used patterns using purely generic algorithms and showed how
it is possible to combine generic programs with practical features such
as tactics in Idris. In the end, I also presented a detailed analysis along
with informal justification of why it would be hard to implement a SYB-
style library in a dependently typed programming language. I believe

Chapter 8. Conclusion 83

that these contributions had shed some more light on the possibilities
and limitations of the generic programming approach, and shown that
it may require some considerations for future library implementers and
language designers.

For the final goal, I had analysed the overhead contributed by the
generic encoding of datatypes and presented two techniques to elimi-
nate that overhead. The first technique was an extension to the described
types framework with an annotation to support erasure of arguments.
The second technique was an algorithm that specialised datatypes by
their static parameters, which I had designed with inspiration from the
world of partial evaluation. While an actual implementation still needs
to be developed, application of the algorithm by hand showed that it
was possible to eliminate virtually all overhead of the described types
in terms of both space usage and runtime performance.

Bibliography

Altenkirch, Thorsten, Conor McBride, and Peter Morris (2007). “Generic
programming with dependent types”. In: Datatype-Generic Program-
ming. Springer, pp. 209–257.

Benke, Marcin, Peter Dybjer, and Patrik Jansson (2003). “Universes for
Generic Programs and Proofs in Dependent Type Theory”. In: Nordic
Journal of Computing 10.4, pp. 265–289.

Bernardy, Jean-Philippe. “A theory of parametric polymorphism and an
application”. PhD thesis.

Bernardy, Jean-Philippe, Patrik Jansson, and Ross Paterson (2010).
“Parametricity and dependent types”. In: ACM Sigplan Notices.
Vol. 45. 9. ACM, pp. 345–356.

Bird, Richard and Lambert Meertens (1998). “Nested datatypes”. In:
Mathematics of program construction. Springer, pp. 52–67.

Boquist, Urban (1999). “Code optimisation techniques for lazy func-
tional languages”. PhD thesis.

Brady, Edwin (2013). “Idris, a general-purpose dependently typed pro-
gramming language: Design and implementation”. In: Journal of
Functional Programming 23.05, pp. 552–593.

Brady, Edwin, Conor Mcbride, and James Mckinna (2004). “Inductive
families need not store their indices”. In: Types for Proofs and Programs,
Torino, 2003, volume 3085 of LNCS. Springer-Verlag, pp. 115–129.

Chapman, James et al. (2010). “The Gentle Art of Levitation”. In: Proceed-
ings of the 15th ACM SIGPLAN International Conference on Functional
Programming. ICFP ’10. Baltimore, Maryland, USA: ACM, pp. 3–14.
isbn: 978-1-60558-794-3. doi: 10.1145/1863543.1863547. url: http:
//doi.acm.org/10.1145/1863543.1863547.

Christiansen, David Raymond (2014). “Reflect on Your Mistakes!:
Lightweight Domain-Specific Error Messages”. In: TFP 2014. Submit-
ted.

http://dx.doi.org/10.1145/1863543.1863547
http://doi.acm.org/10.1145/1863543.1863547
http://doi.acm.org/10.1145/1863543.1863547

Bibliography 85

Dagand, Pierre-Évariste (2013). “A Cosmology of Datatypes Reusability
and Dependent Types”. PhD thesis.

Dagand, Pierre-Evariste and Conor McBride (2012). “Transporting func-
tions across ornaments”. In: ACM SIGPLAN Notices. Vol. 47. 9. ACM,
pp. 103–114.

Diehl, Larry (2013). Fixed Hierarchy EveryWhere. url: https://github.
com / larrytheliquid / leveling - up / blob / master / src / Extras /

FixedHierarchyEverywhere.agda.
Diehl, Larry and Tim Sheard (2014). “Generic Constructors and Elimi-

nators from Descriptions”. In: WGP ’14.
Dussart, Dirk, Eddy Bevers, and Karel De Vlaminck (1995). “Polyvariant

Constructor Specialisation”. In: Proceedings of the 1995 ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-based Program Manipu-
lation. PEPM ’95. La Jolla, California, USA: ACM, pp. 54–65. isbn:
0-89791-720-0. doi: 10.1145/215465.215554. url: http://doi.acm.
org/10.1145/215465.215554.

Dybjer, Peter (1997). “Inductive Families”. In: Formal Aspects of Comput-
ing 6, pp. 440–465.

Hughes, John (1999). “A Type Specialisation Tutorial”. English. In: Par-
tial Evaluation. Ed. by John Hatcliff, Torben Ægidius Mogensen, and
Peter Thiemann. Vol. 1706. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 293–325. isbn: 978-3-540-66710-0.
doi: 10.1007/3-540-47018-2_12. url: http://dx.doi.org/10.1007/3-
540-47018-2_12.

Jansson, Patrik and Johan Jeuring (1997). “PolyP—a Polytypic Pro-
gramming Language Extension”. In: Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
POPL ’97. Paris, France: ACM, pp. 470–482. isbn: 0-89791-853-3. doi:
10.1145/263699.263763. url: http://doi.acm.org/10.1145/263699.
263763.

Jones, Neil D., Carsten K. Gomard, and Peter Sestoft (1993). Partial Evalu-
ation and Automatic Program Generation. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc. isbn: 0-13-020249-5.

Jones, Neil D. and Alan Mycroft (1986). “Data Flow Analysis of Applica-
tive Programs Using Minimal Function Graphs”. In: Proceedings of the
13th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. POPL ’86. St. Petersburg Beach, Florida: ACM, pp. 296–
306. doi: 10.1145/512644.512672. url: http://doi.acm.org/10.1145/
512644.512672.

https://github.com/larrytheliquid/leveling-up/blob/master/src/Extras/FixedHierarchyEverywhere.agda
https://github.com/larrytheliquid/leveling-up/blob/master/src/Extras/FixedHierarchyEverywhere.agda
https://github.com/larrytheliquid/leveling-up/blob/master/src/Extras/FixedHierarchyEverywhere.agda
http://dx.doi.org/10.1145/215465.215554
http://doi.acm.org/10.1145/215465.215554
http://doi.acm.org/10.1145/215465.215554
http://dx.doi.org/10.1007/3-540-47018-2_12
http://dx.doi.org/10.1007/3-540-47018-2_12
http://dx.doi.org/10.1007/3-540-47018-2_12
http://dx.doi.org/10.1145/263699.263763
http://doi.acm.org/10.1145/263699.263763
http://doi.acm.org/10.1145/263699.263763
http://dx.doi.org/10.1145/512644.512672
http://doi.acm.org/10.1145/512644.512672
http://doi.acm.org/10.1145/512644.512672

Bibliography 86

Lämmel, Ralf and Simon Peyton Jones (2003). “Scrap your boilerplate:
a practical design pattern for generic programming”. In: ACM SIG-
PLAN Notices. Vol. 38. 3. ACM, pp. 26–37.

Leroy, Xavier (1997). The effectiveness of type-based unboxing. Tech. rep.
Boston College, Computer Science Department.

Magalhães, José Pedro (2012). “Less is more: generic programming the-
ory and practice”. PhD thesis. Universiteit Utrecht.

Magalhães, José Pedro et al. (2010). “A generic deriving mechanism for
Haskell”. In: ACM Sigplan Notices 45.11, pp. 37–48.

McBride, Conor (2010). “Ornamental algebras, algebraic ornaments”. In:
Journal of Functional Programming.

Milner, Robin, Mads Tofte, and David Macqueen (1997). The Definition of
Standard ML. Cambridge, MA, USA: MIT Press. isbn: 0262631814.

Mitchell, Neil (2014). Haskell Documentation for package
Data.Generics.Uniplate.Direct. url: http : / / hackage . haskell . org /

package/uniplate-1.6.10/docs/Data-Generics-Uniplate-Direct.

html.
Mitchell, Neil and Colin Runciman (2007). “Uniform boilerplate and list

processing”. In: Proceedings of the ACM SIGPLAN workshop on Haskell
workshop. ACM, pp. 49–60.

Mogensen, Torben Ægidius (1993). “Constructor Specialization”. In: Pro-
ceedings of the 1993 ACM SIGPLAN Symposium on Partial Evaluation
and Semantics-based Program Manipulation. PEPM ’93. Copenhagen,
Denmark: ACM, pp. 22–32. isbn: 0-89791-594-1. doi: 10.1145/154630.
154633. url: http://doi.acm.org/10.1145/154630.154633.

Mogensen, Torben Ægidius and Peter Sestoft (1997). “Partial evaluation:
introduction what is partial evaluation?” In: Encyclopedia of computer
science and technology. Ed. by A. Kent and J. G. Williams. Suppl. 22.
Vol. 37. Marcel Dekker Incorporated, pp. 247–279.

Nielson, Flemming (Dec. 1989). “Two-level Semantics and Abstract In-
terpretation”. In: Theor. Comput. Sci. 69.2, pp. 117–242. issn: 0304-
3975. doi: 10.1016/0304-3975(89)90091-1. url: http://dx.doi.org/
10.1016/0304-3975(89)90091-1.

Norell, Ulf (2009). “Dependently typed programming in Agda”. In: Ad-
vanced Functional Programming. Springer, pp. 230–266.

Peyton Jones, Simon and John Launchbury (1991). “Unboxed values as
first class citizens in a non-strict functional language”. In: Proceedings
of the 5th ACM conference on Functional programming languages and com-
puter architecture. Springer-Verlag New York, Inc., pp. 636–666.

http://hackage.haskell.org/package/uniplate-1.6.10/docs/Data-Generics-Uniplate-Direct.html
http://hackage.haskell.org/package/uniplate-1.6.10/docs/Data-Generics-Uniplate-Direct.html
http://hackage.haskell.org/package/uniplate-1.6.10/docs/Data-Generics-Uniplate-Direct.html
http://dx.doi.org/10.1145/154630.154633
http://dx.doi.org/10.1145/154630.154633
http://doi.acm.org/10.1145/154630.154633
http://dx.doi.org/10.1016/0304-3975(89)90091-1
http://dx.doi.org/10.1016/0304-3975(89)90091-1
http://dx.doi.org/10.1016/0304-3975(89)90091-1

Bibliography 87

Peyton Jones, Simon and David Lester (1992). Implementing Functional
Languages. Upper Saddle River, NJ, USA: Prentice-Hall, Inc. isbn: 0-
13-721952-0.

Peyton Jones, Simon et al. (2003). “The Haskell 98 Language and Li-
braries: The Revised Report”. In: Journal of Functional Programming
13.1. http://www.haskell.org/definition/, pp. 0–255.

Reynolds, John (1983). “Types, Abstraction and Parametric Polymor-
phism”. In: IFIP Congress, pp. 513–523.

Taha, Walid (2004). “A gentle introduction to multi-stage program-
ming”. In: Domain-Specific Program Generation. Springer, pp. 30–50.

Tejiščák, Matúš (2014). Erasure by usage analysis. url: https://github.
com/idris-lang/Idris-dev/wiki/Erasure-by-usage-analysis.

The Idris Community (2014). Programming in Idris: A Tutorial.
Wadler, Philip (1989). “Theorems for free!” In: FUNCTIONAL PRO-

GRAMMING LANGUAGES AND COMPUTER ARCHITECTURE.
ACM Press, pp. 347–359.

Wegman, Mark and Kenneth Zadeck (Apr. 1991). “Constant Propagation
with Conditional Branches”. In: ACM Trans. Program. Lang. Syst. 13.2,
pp. 181–210. issn: 0164-0925. doi: 10.1145/103135.103136. url: http:
//doi.acm.org/10.1145/103135.103136.

Westbrook, Edwin et al. (June 2010). “Mint: Java Multi-stage Program-
ming Using Weak Separability”. In: SIGPLAN Not. 45.6, pp. 400–411.
issn: 0362-1340. doi: 10.1145/1809028.1806642. url: http://doi.acm.
org/10.1145/1809028.1806642.

http://www.haskell.org/definition/
https://github.com/idris-lang/Idris-dev/wiki/Erasure-by-usage-analysis
https://github.com/idris-lang/Idris-dev/wiki/Erasure-by-usage-analysis
http://dx.doi.org/10.1145/103135.103136
http://doi.acm.org/10.1145/103135.103136
http://doi.acm.org/10.1145/103135.103136
http://dx.doi.org/10.1145/1809028.1806642
http://doi.acm.org/10.1145/1809028.1806642
http://doi.acm.org/10.1145/1809028.1806642

Appendix A

Generation function

1 elabDescription :: [Int] -> Name -> PTerm ->

2 [(Docstring, [(Name, Docstring)], Name, PTerm,

FC, [Name])] ->

3 ElabInfo -> Idris ()

4 elabDescription paramPos dn ty cons info = do

5 elabDecl EAll toplevel labelsTyDecl

6 elabDecl EAll toplevel labelsClauses

7 elabDecl EAll toplevel descTyDecl

8 elabDecl EAll toplevel descClauses

9 elabDecl EAll toplevel aliasTyDecl

10 elabDecl EAll toplevel aliasClauses

11 mapM_ (elabDecl EAll toplevel) aliasCnssTyDecl

12 mapM_ (elabDecl EAll toplevel) aliasCnssClauses

13 where labelsTy :: PTerm

14 labelsTy = PRef emptyFC (sNS (sUN "CEnum") ["Generic", "

Prelude"])

15 labelsName :: Name

16 labelsName = SN . LabelsN $ dn

17 labelsTyDecl :: PDecl

18 labelsTyDecl = PTy emptyDocstring [] defaultSyntax emptyFC

[TotalFn] labelsName labelsTy

19 -- Extract names from constructors and map them to Idris

lists

20 labelsClauses :: PDecl

21 labelsClauses =

22 PClauses emptyFC [TotalFn] labelsName

Appendix A. Generation function 89

23 [PClause emptyFC labelsName (PRef emptyFC labelsName)

[]

24 (mkList emptyFC (map (\(doc, adocs, cnm, cty, cfc,

cargs)

25 -> PConstant . Str . show $ cnm) cons)) []]

26 descName :: Name

27 descName = SN . DescN $ dn

28 descTy :: PTerm -> PTerm

29 descTy indexType =

30 PApp emptyFC (PRef emptyFC (sNS (sUN "TaggedDesc") ["

Generic", "Prelude"]))

31 [pexp $ PRef emptyFC labelsName, pexp natZ, pexp

indexType]

32 descTyDecl :: PDecl

33 descTyDecl = PTy emptyDocstring [] defaultSyntax emptyFC [

TotalFn] descName (descTy (PRef emptyFC unitTy))

34 descClauses = PClauses emptyFC [TotalFn] descName [PClause

emptyFC descName (PRef emptyFC descName) []

35 (switchDesc (foldr (flip (.) (\(_,_,_,term,_,_)

-> descCns term) pairI) unitI cons)) []]

36 natZ :: PTerm

37 natZ = PRef emptyFC (sNS (sUN "Z") ["Nat", "Prelude"])

38 natS :: PTerm -> PTerm

39 natS t = PApp emptyFC (PRef emptyFC (sNS (sUN "S") ["Nat",

"Prelude"])) [pexp t]

40 unitI :: PTerm

41 unitI = PRef emptyFC unitCon

42 pairI :: PTerm -> PTerm -> PTerm

43 pairI x y = PApp emptyFC (PRef emptyFC pairCon)

44 [pimp (sUN "A") Placeholder True, pimp (

sUN "B") Placeholder True, pexp x, pexp

y]

45 eqRefl :: PTerm

46 eqRefl = PApp emptyFC (PRef emptyFC eqCon) [pimp (sMN 0 "A

") Placeholder True, pimp (sMN 0 "x") Placeholder True]

47 dpairI :: PTerm -> PTerm -> PTerm

48 dpairI x y = PApp emptyFC (PRef emptyFC existsCon)

49 [pimp (sUN "a") Placeholder True, pimp (

sUN "P") Placeholder True, pexp x, pexp

Appendix A. Generation function 90

y]

50 tagZ :: PTerm

51 tagZ = PRef emptyFC (sNS (sUN "TZ") ["Generic", "Prelude"

])

52 tagS :: PTerm -> PTerm

53 tagS t = PApp emptyFC (PRef emptyFC (sNS (sUN "TS") ["

Generic", "Prelude"])) [pexp t]

54 tagFromNum :: Integer -> PTerm

55 tagFromNum n | n == 0 = tagZ

56 | n > 0 = tagS (tagFromNum (n - 1))

57 dataCon :: PTerm -> PTerm

58 dataCon inn = PApp emptyFC (PRef emptyFC (sNS (sUN "Con")

["Generic", "Prelude"])) [pexp inn]

59 switchDesc :: PTerm -> PTerm

60 switchDesc consmappings = PApp emptyFC (PRef emptyFC (sNS

(sUN "switchDesc") ["Generic", "Prelude"])) [pexp

consmappings]

61 descRet :: PTerm -> PTerm

62 descRet ixval = PApp emptyFC (PRef emptyFC (sNS (sUN "Ret"

) ["Generic", "Prelude"])) [pexp ixval]

63 descRec :: PTerm -> PTerm -> PTerm

64 descRec ixval rest = PApp emptyFC (PRef emptyFC (sNS (sUN

"Rec") ["Generic", "Prelude"])) [pexp ixval, pexp rest]

65 descArg :: PTerm -> PTerm -> PTerm

66 descArg typ rest = PApp emptyFC (PRef emptyFC (sNS (sUN "

Arg") ["Generic", "Prelude"])) [pexp typ, pexp rest]

67 dataTy :: PTerm -> PTerm -> PTerm

68 dataTy datadesc ixval = PApp emptyFC (PRef emptyFC (sNS (

sUN "Data") ["Generic", "Prelude"])) [pexp datadesc,

pexp ixval]

69 descCns :: PTerm -> PTerm

70 descCns (PPi _ nm ty rest) = descCnsArg nm ty (descCns

rest)

71 descCns _ = descRet unitI

72 descCnsArg :: Name -> PTerm -> PTerm -> PTerm

73 descCnsArg nm ty@(PApp _ (PRef _ nm’) _) rest

74 | simpleName dn == simpleName nm’ = descRec unitI rest

75 | otherwise = descArg ty (PLam nm ty rest)

76 descCnsArg nm ty@(PRef _ nm’) rest

Appendix A. Generation function 91

77 | simpleName dn == simpleName nm’ = descRec unitI rest

78 | otherwise = descArg ty (PLam nm ty rest)

79 descCnsArg nm ty rest = descArg ty (PLam nm ty rest)

80 aliasName :: Name

81 aliasName = uniqueName dn [dn]

82 aliasTyDecl :: PDecl

83 aliasTyDecl = PTy emptyDocstring [] defaultSyntax emptyFC

[TotalFn] aliasName PType

84 aliasClauses :: PDecl

85 aliasClauses = PClauses emptyFC [TotalFn] aliasName [

PClause emptyFC aliasName (PRef emptyFC aliasName) []

86 (dataTy (PRef emptyFC descName) unitI)

[]]

87 aliasCnssTyDecl :: [PDecl]

88 aliasCnssTyDecl = map (\(_,_,nm,ty,_,_) ->

89 PTy emptyDocstring [] defaultSyntax

emptyFC [TotalFn] (aliasCnsNm nm) (

aliasCnsTy ty)) cons

90 aliasCnsTy :: PTerm -> PTerm

91 aliasCnsTy ty@(PApp _ (PRef _ nm’) args)

92 | simpleName dn == simpleName nm’ = PApp emptyFC (PRef

emptyFC aliasName) args

93 aliasCnsTy ty@(PRef _ nm’)

94 | simpleName dn == simpleName nm’ = PRef emptyFC

aliasName

95 aliasCnsTy ty@(PPi pl nm ty’ rest) = PPi pl nm (aliasCnsTy

ty’) (aliasCnsTy rest)

96 aliasCnsTy ty = ty

97 aliasCnsNm :: Name -> Name

98 aliasCnsNm nm = uniqueName nm [nm]

99 aliasCnssClauses :: [PDecl]

100 aliasCnssClauses =

101 map (\((_,_,nm,ty,_,_), i) ->

102 let args = namePis . fst $ splitPi ty

103 in PClauses emptyFC [TotalFn] (aliasCnsNm nm)

104 [PClause emptyFC (aliasCnsNm nm) (aliasCnsLhs nm

args) [] (aliasCnsRhs nm i args) []])

105 (zip cons [0..])

106

Appendix A. Generation function 92

107
108 aliasCnsLhs :: Name -> [(Name, Plicity, PTerm)] -> PTerm

109 aliasCnsLhs nm args =

110 (PApp emptyFC (PRef emptyFC (aliasCnsNm nm))

111 (map (\(arg, _, _) -> pexp (PRef emptyFC arg)) args)

)

112 aliasCnsRhs :: Name -> Integer -> [(Name, Plicity, PTerm)]

-> PTerm

113 aliasCnsRhs nm i args =

114 dataCon

115 (dpairI

116 (PConstant . Str . show $ nm)

117 (dpairI

118 (tagFromNum i) (foldr (flip (.) (\(nm’, pl, ty) ->

PRef emptyFC nm’) dpairI) eqRefl args)))

119
120 namePis :: [(Name, Plicity, PTerm)] -> [(Name, Plicity,

PTerm)]

121 namePis = namePis’ []

122 where namePis’ :: [(Name, Plicity, PTerm)] -> [(Name,

Plicity, PTerm)] -> [(Name, Plicity, PTerm)]

123 namePis’ acc [] = reverse acc

124 namePis’ acc ((nm, pl, ty):rest) = namePis’ ((

uniqueName nm prevnm, pl, ty):acc) rest

125 where prevnm :: [Name]

126 prevnm = map (\(nm, _, _) -> nm) acc

Listing A.1: Generating relevant functions for working with described types

	Acknowledgments
	Contents
	List of Figures
	1 Introduction
	1.1 Context
	1.2 Problem definition
	1.3 Aim and scope
	1.4 Significance
	1.5 Overview

	2 Generic programming
	2.1 The generic structure of inductive data types
	2.2 Synthesising types from descriptions
	2.3 The (mostly) gentle art of levitation
	2.4 Ensuring tagging of descriptions

	3 Partial evaluation
	3.1 The static nature of programs
	3.2 An optimising partial evaluator
	3.3 Dividing the static and dynamic parts of a program
	3.4 Constructor specialisation

	4 Levitating Idris
	4.1 Creating descriptions from ordinary datatype declarations
	4.2 Parametric extension to descriptions

	5 Practical examples
	5.1 Generic algorithms for deriving type class instances
	5.2 Algorithms with purely generic properties
	5.3 Scrapping your dependently-typed boilerplate is hard

	6 Optimising Idris for flight
	6.1 Analysing the encoding overhead
	6.2 Preparing descriptions for erasure
	6.3 Sketching out an algorithm for specialising described types

	7 Discussion
	7.1 Related Work
	7.2 Reflections and Outlook

	8 Conclusion
	Bibliography
	A Generation function

