
Bayesian protein superposition using Hamiltonian
Monte Carlo

Lys Sanz Moreta1*, Ahmad Salim Al-Sibahi1*, and Thomas Hamelryck1,4*

1 Department of Computer Science. University of Copenhagen, Denmark
4 The Bioinformatics Centre. Section for Computational and RNA Biology. University of Copenhagen, Denmark

* Corresponding authors.
moreta@di.ku.dk (Lys Sanz Moreta),

ahmad@di.ku.dk (Ahmad Salim Al-Sibahi),
thamelry@bio.ku.dk (Thomas Hamelryck)

Abstract—Optimally superimposing protein structures is essen-
tial to study their structure, function, dynamics and evolution.
We present THESEUS NUTS (No U-Turn Sampler), a Bayesian
version of the THESEUS model [1]–[3] which relies on maximum
likelihood estimation. The probabilistic model interprets each
protein as a rotated and translated noisy observation of a latent
mean structure. Unlike conventional methods [4], THESEUS
takes into account the differences in correlations between the
atoms in the structure. This paper extends the previous THE-
SEUS MAP (Maximum A Posteriori) model, [5] to full Bayesian
inference by making use of the iterative NUTS [6], a Hamiltonian
Monte Carlo method. The model delivers consistent results and
is computationally efficient thanks to its implementation in the
probabilistic programming language NumpPyro [7], [8] which in
turn relies upon JAX [9], a system for high-performance machine
learning.

Index Terms—protein superposition, Bayesian modelling, prob-
abilistic programming, NUTS, Hamiltonian Monte Carlo, protein
structure superposition

I. INTRODUCTION

Superimposing proteins optimally is crucial to compare their
structures. The standard method minimizes the root mean
squared deviation (RMSD) of the distances between paired
atoms. This approach centers the proteins to the origin and
calculates the rotation matrix by singular value decomposition
[4] or quaternion algebra [10], [11]. These methods presume
that all atoms positions share equal variance (homoscedastic-
ity). This becomes problematic in the case of proteins with
flexible loops or flexible terminal regions, where some of the
atoms can exhibit high variance. The THESEUS model [1],
[2] solved this issue by allowing identification of atoms with
higher or lower variance (heteroscedasticity), corresponding to
variable and conserved regions.

Previously we implemented the THESEUS model in the
probabilistic programming language Pyro [8] (THESEUS
MAP). This made it possible to calculate a maximum a pos-

teriori (MAP) estimate using automated stochastic variational
inference (SVI) and suitable priors [5].

Here, we present a fully Bayesian version of THESEUS
based on iterative NUTS sampling. The model is implemented
in the deep probabilistic programming language NumPyro
which facilitates high-performance machine learning research
thanks to its JAX backend [9]. JAX is an extensible system for
composable function transformations which allows the imple-
mentation of sophisticated algorithms with high performance
in Python.

II. METHODS

A. Algorithm summary

THESEUS considers the observed structures, X1 and X2,
as distributed according to a multivariate matrix normal dis-
tribution with latent mean structure M, with Nx3 size, and
covariance matrices U and V. X2 is rotated (R) and translated
(T) to achieve the optimal superposition 2. The rotation matrix
is represented by quaternions in order to formulate a uniform
prior over the space of rotations.

X1 ∼MN (M,U,V). (1)

X2 ∼MN (MR− 1NT,U,V). (2)

In practice, the matrix-normal distributions of X1 and X2

reduce to a product of multivariate normal distributions. For
details on the model and its prior distribution we refer to [5].

B. Hamiltonian Monte Carlo methods

Hamiltonian Monte Carlo (HMC) is a Markov chain Monte
Carlo (MCMC) algorithm that replaces random walk dynamics
with Hamiltonian dynamics which rely on gradient infor-
mation to perform the sampling. The No-U-Turn Sampler
(NUTS) [12] is an HMC extension that allows automatically
tuning the required hyperparameters (the step size and the
number of steps).



For our model, we rely on the iterative NUTS implementa-
tion in Numpyro to perform the sampling. Iterative NUTS [6]
improves on conventional NUTS [12] by replacing recursion
with iteration in the construction of the binary tree used
in the proposal. The iterative approach can be implemented
efficiently in JAX [9]. JAX can in turn construct a graph
representing the computation, and compile it for efficient
execution on modern hardware using optimizations based on
linear algebra. These optimizations were critical in making
NUTS sampling scale to high-dimensional protein systems
with hundreds of atoms, and allow us to retrieve a large
number of samples for the posterior distribution in seconds.

C. Inference details
The posterior distribution was approximated by 1000 sam-

ples after a burn-in period of 500 samples. The parameters
of the inference method were chosen in order to optimize
speed: the tree depth was restricted to 10 nodes, the acceptance
probability of the samples was set to 0.8 or higher and the
chain was initialized by a prior based on the median of 15
samples. We ran a single Markov chain.

III. MATERIALS

The algorithm was tested on several proteins from the
RCSB protein database [13] whose structures were determined
by Nuclear Magnetic Resonance (NMR). Such files typically
contain several models of the same protein. These models
represent the structural dynamics of the protein in an aqueous
medium, and thus provide structural snapshots that reveal both
conserved and variable regions. This makes them challenging
targets for conventional RMSD superposition. We used the fol-
lowing structures: 1AB2, 1AHL, 1JE3, 1RLP, 1ZWG, 2HF5,
2KHI and 2LMP, which vary from sizes of 35 to 576 residues.

IV. RESULTS

The computations where carried out on an Intel© Xeon
© Gold 6136 CPU @ 3.00GHz and an Nvidia graphic card
(Quadro RTX 6000). The model was implemented both in
Pyro and Numpyro, re-running them for comparison. The latter
implementation was on average approximately 1000 times
faster due to the implementation of iterative NUTS within the
JAX environment. As the computational speed of the Numpyro
implementation was much higher on the CPU than on the
GPU, we focus here on the former . The computational times
register in I are an average compilation of 10 runs for the
Numpyro model. The Pyro version was only run once due to
its low computational speed.

An example of a pair of superimposed structures is shown
in 1. For comparison, the superposition resulting from the
conventional RMSD method [4], calculated using Biopython
[14], is shown on 1a. The THESEUS MAP superposition
is shown in 1b. Finally, the THESEUS NUTS superposition
is displayed in 1c. These images illustrate the differences
between these different methods and their abilities to handle
regions with high and low variability. Supplementary figures
of superimposed structures exhibiting different degrees of
variability can be found in the Appendix.

TABLE I
RESULTS OF APPLYING THESEUS NUTS TO THE TEST STRUCTURES.
FIRST COLUMN: PDB IDENTIFIER. SECOND COLUMN: THE NUMBER OF
Cα ATOMS USED IN THE SUPERPOSITION. THIRD COLUMN: THE MODEL

IDENTIFIERS. FOURTH COLUMN: CPU RUNNING TIME FOR THE NUMPYRO
MODEL. FIFTH COLUMN: GPU RUNNING TIME FOR PYRO MODEL.

PBD ID Length
Cα

Protein
Models

CPU
Time
(Numpyro)

GPU
Time
(Pyro)

1AB2 109 0 and 3 24.3s 1h07m35s
1AHL 49 0 and 2 19.1s 1h05m44s
1JE3 97 0 and 1 22s 1h05m35s
1RLP 65 0 and 5 26s 58m48s
1ZWG 35 0 and 3 20s 52m30s
2HF5 68 0 and 3 30.9s 1h04m37s
2KHI 95 0 and 1 25.1s 1h05m24s
2LMP 576 0 and 3 154.5s 57m25s

V. CONCLUSION

Here, we present a Bayesian model for protein structure
superposition implemented in the deep probabilistic program-
ming language Numpyro [7], [8] with JAX [9] as its back-end
. This is the first time that the full Bayesian posterior over the
parameters of protein superposition is inferred.

The results achieved using Bayesian inference suggest that
THESEUS could be potentially used as a suitable error model
for probabilistic protein structure prediction. The THESEUS
model has the potential to distinguish among partially correct
and utterly incorrect predictions when used as a potential like-
lihood model. Our results show that it is capable of delivering a
rich posterior with multiple or unique superposition solutions,
as seen for example in Fig. 1 or Fig. 4 in the Supplementary
section, respectively.

CONTRIBUTIONS AND ACKNOWLEDGEMENTS

Implemented algorithm in NumPyro and Numpy JAX:
LSM and ASA. Wrote article: LSM, TH, ASA. Performed
experiments: LSM. Designed experiments: TH. LSM and ASA
acknowledge support from the Independent Research Fund
Denmark (grant: "Resurrecting ancestral proteins in silico to
understand how cancer drugs work") and "Deep Probabilistic
Programming for Protein Structure Prediction" grant from
Independent Research Fund Denmark(DFF), respectively. We
thank the Numpyro team for bench-marking the model and
further suggestions on how to increase the speed performance.

DATA AND SOFTWARE AVAILABILITY

NumPyro [7], [8] and Numpy JAX [9] based code is a avail-
able at https://github.com/LysSanzMoreta/BayesTheseus-PP

REFERENCES

[1] D. L. Theobald and D. S. Wuttke, “Empirical Bayes hierarchical models
for regularizing maximum likelihood estimation in the matrix Gaussian
Procrustes problem,” PNAS, vol. 103, pp. 18 521–18 527, 2006.

[2] D. L. Theobald and P. A. Steindel, “Optimal simultaneous superposition-
ing of multiple structures with missing data,” Bioinformatics, vol. 28,
pp. 1972–1979, 2012.

[3] K. Mardia and I. Dryden, “The statistical analysis of shape data,”
Biometrika, vol. 76, no. 2, pp. 271–281, 1989.

[4] W. Kabsch, “A discussion of the solution for the best rotation to relate
two sets of vectors,” Acta Cryst. A, vol. 34, pp. 827–828, 1978.

https://github.com/LysSanzMoreta/BayesTheseus-PP


[5] L. S. Moreta, A. S. Al-Sibahi, D. Theobald, W. Bullock, B. N. Rommes,
A. Manoukian, and T. Hamelryck, “A probabilistic programming ap-
proach to protein structure superposition,” in 2019 IEEE Conference
on Computational Intelligence in Bioinformatics and Computational
Biology (CIBCB), July 2019, pp. 1–5.

[6] N. P. Du Phan, “Iterative NUTS,” https://github.com/pyro-ppl/numpyro/
wiki/Iterative-NUTS, 2019.

[7] D. Phan, N. Pradhan, and M. Jankowiak, “Composable effects for
flexible and accelerated probabilistic programming in numpyro,” arXiv
preprint arXiv:1912.11554, 2019.

[8] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan,
T. Karaletsos, R. Singh, P. A. Szerlip, P. Horsfall, and N. D.
Goodman, “Pyro: Deep universal probabilistic programming,” J. Mach.
Learn. Res., vol. 20, pp. 28:1–28:6, 2019. [Online]. Available:
http://jmlr.org/papers/v20/18-403.html

[9] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary,
D. Maclaurin, and S. Wanderman-Milne, “JAX: composable
transformations of Python+NumPy programs,” 2018. [Online].
Available: http://github.com/google/jax

[10] B. Horn, “Closed-form solution of absolute orientation using unit
quaternions,” J. Opt. Soc. Am. A, vol. 4, pp. 629–642, 1987.

[11] E. Coutsias, C. Seok, and K. Dill, “Using quaternions to calculate rmsd,”
J. Comp. Chem., vol. 25, pp. 1849–1857, 2004.

[12] M. D. Hoffman and A. Gelman, “The no-u-turn sampler: adaptively
setting path lengths in hamiltonian monte carlo.” Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1593–1623, 2014.

[13] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat,
H. Weissig, I. N. Shindyalov, and P. E. Bourne, “The protein data bank,”
Nucleic acids research, vol. 28, no. 1, pp. 235–242, 2000.

[14] P. J. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke,
I. Friedberg, T. Hamelryck, F. Kauff, B. Wilczynski et al., “Biopython:
freely available python tools for computational molecular biology and
bioinformatics,” Bioinformatics, vol. 25, no. 11, pp. 1422–1423, 2009.

https://github.com/pyro-ppl/numpyro/wiki/Iterative-NUTS
https://github.com/pyro-ppl/numpyro/wiki/Iterative-NUTS
http://jmlr.org/papers/v20/18-403.html
http://github.com/google/jax


(a) Kabsch-RMSD (b) Theseus MAP1ZWG

(c) Theseus NUTS (d) Pairwise Distances NUTS

Fig. 1. Protein superposition for two conformations of protein 1ZWG obtained from (a) conventional RMSD superimposition and (b) THESEUS MAP and
(c) THESEUS NUTS. The protein in green is rotated (X2). Graph (c) shows the pairwise distances (in Å) between the Cα coordinates of the structure pairs.
The blue and orange lines represent RMSD and THESEUS-PP superposition, respectively.



VI. APPENDIX

(a) Kabsch-RMSD (b) Theseus MAP1AB2

(c) Theseus NUTS (d) Pairwise Distances NUTS

Fig. 2. Superposition of two conformations of protein 1AB2 obtained from (a) conventional RMSD superimposition and (b) THESEUS MAP and (c)
THESEUS NUTS. The protein in green is rotated (X2). Graph (c) shows the pairwise distances (in Å) between the Cα coordinates of the structure pairs.
The blue and orange lines represent RMSD and THESEUS-PP superposition, respectively.



(a) Kabsch-RMSD (b) Theseus MAP

1AHL

(c) Theseus NUTS (d) Pairwise Distances NUTS

Fig. 3. Protein superposition of two conformations of protein 1AHL obtained from (a) conventional RMSD superimposition and (b) THESEUS MAP and
(c) THESEUS NUTS. The protein in green is rotated (X2). Graph (c) shows the pairwise distances (in Å) between the Cα coordinates of the structure pairs.
The blue and orange lines represent RMSD and THESEUS-PP superposition, respectively.



(a) Kabsch-RMSD (b) Theseus MAP

1JE3

(c) Theseus NUTS (d) Pairwise Distances NUTS

Fig. 4. Superposition of two conformations of protein 1JE3 obtained from (a) conventional RMSD superimposition and (b) THESEUS MAP and (c) THESEUS
NUTS. The protein in green is rotated (X2). Graph (c) shows the pairwise distances (in Å) between the Cα coordinates of the structure pairs. The blue and
orange lines represent RMSD and THESEUS-PP superposition, respectively.



(a) Kabsch-RMSD (b) Theseus MAP

1RLP

(c) Theseus NUTS (d) Distances NUTS

Fig. 5. Superposition of two conformations of protein 1RLP obtained from (a) conventional RMSD superimposition and (b) THESEUS MAP and (c)
THESEUS NUTS. The protein in green is rotated (X2). Graph (c) shows the pairwise distances (in Å) between the Cα coordinates of the structure pairs.
The blue and orange lines represent RMSD and THESEUS-PP superposition, respectively.



(a) Kabsch-RMSD (b) Theseus MAP

2HF5

(c) Theseus NUTS (d) Distances NUTS

Fig. 6. Superposition of two conformations of protein 2HF5 obtained from (a) conventional RMSD superimposition and (b) THESEUS MAP and (c) THESEUS
NUTS. The protein in green is rotated (X2). Graph (c) shows the pairwise distances (in Å) between the Cα coordinates of the structure pairs. The blue and
orange lines represent RMSD and THESEUS-PP superposition, respectively.



(a) Kabsch-RMSD (b) Theseus MAP

2KHI

(c) Theseus NUTS (d) Distances NUTS

Fig. 7. Superposition of two conformations of protein 2KHI obtained from (a) conventional RMSD superimposition and (b) THESEUS MAP and (c) THESEUS
NUTS. The protein in green is rotated (X2). Graph (c) shows the pairwise distances (in Å) between the Cα coordinates of the structure pairs. The blue and
orange lines represent RMSD and THESEUS-PP superposition, respectively.



(a) Kabsch-RMSD (b) Theseus MAP

2KHI

(c) Theseus NUTS (d) Distances NUTS

Fig. 8. Superposition of two conformations of protein 2KHI obtained from (a) conventional RMSD superimposition and (b) THESEUS MAP and (c) THESEUS
NUTS. The protein in green is rotated (X2). Graph (c) shows the pairwise distances (in Å) between the Cα coordinates of the structure pairs. The blue and
orange lines represent RMSD and THESEUS-PP superposition, respectively.


