
Experiences from Designing and Validating
a Software Modernization Transformation

Alexandru F. Iosif-Lazăr
IT University of Copenhagen

afla@itu.dk

Juha Erik Savolainen
Danfoss Power Electronics

juhaerik.savolainen@danfoss.com

Ahmad Salim Al-Sibahi
IT University of Copenhagen

asal@itu.dk

Krzysztof Sierszecki
Danfoss Power Electronics

ksi@danfoss.com

Aleksandar S. Dimovski
IT University of Copenhagen

adim@itu.dk

Andrzej Wąsowski
IT University of Copenhagen

wasowski@itu.dk

c©2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—Software modernization often involves complex
code transformations that convert legacy code to new architec-
tures or platforms, while preserving the semantics of the original
programs.

We present the lessons learnt from an industrial software mod-
ernization project of considerable size. This includes collecting
requirements for a code-to-model transformation, designing and
implementing the transformation algorithm, and then validating
correctness of this transformation for the code-base at hand. Our
transformation is implemented in the TXL rewriting language
and assumes specifically structured C++ code as input, which it
translates to a declarative configuration model.

The correctness criterion for the transformation is that the
produced model admits the same configurations as the input code.
The transformation converts C++ functions specifying around a
thousand configuration parameters. We verify the correctness for
each run individually, using translation validation and symbolic
execution. The technique is formally specified and is applicable
automatically for most of the code-base.

Keywords—Experience Report, Functional Equivalence, Pro-
gram Transformation, Symbolic Execution.

I. INTRODUCTION

The panelists of the ASE 2013 conference [1] listed the
growing size and complexity of legacy code as one of the key
challenges of the software industry. Software modernization
is an important contender among the measures to address this
challenge. However, relatively little literature is available about
software modernization projects, especially in the safety critical
domain. We present experiences from a research partnership
around an industrial software modernization project, between
IT University of Copenhagen and Danfoss Power Electronics1,
a global producer of components and solutions for controlling
electric motors driving various machinery. This particular
modernization project involves a configuration tool used to
adapt Danfoss frequency converters to a particular application.
The configuration tool consists of thousands of C++ functions
for accessing and validating the configuration parameters.

The configurator code base is undergoing a modernization
process where each parameter function must be converted from

1http://www.danfoss.com

imperative C++ code to a declarative specification. All the
functions compute a result (either the value of the parameter
or a Boolean value checking its accessibility and validity).
The declarative form of a function is an expression that
must compute the same result as the original imperative code.
The code modernization is done automatically by applying a
transformation—implemented in the rule-based transformation
language TXL [2]—on each function individually. It performs a
sequence of syntactic replacements, gradually eliminating C++
preprocessor directives, local variables, C++ control statements
and leaving behind a pure (i.e. side-effect free) expression.

The execution of a TXL transformation can only catch
trivial errors revealed by a syntactic analysis of the code
(enforcing constraints through pattern matching). This does not
guarantee that the semantics of the source program is preserved.
In the Danfoss case, determining the semantic equivalence is a
decidable problem due to certain properties of the programs—
the execution always terminates, the code fragments do not
contain inline assembler code and they generally employ a
small subset of C++.

We assessed that symbolic execution [3] is mature enough
to handle this task efficiently. We implemented a lightweight
wrapper which compiles both the input and the output of the
transformation and employs the symbolic executor KLEE [4]
to assert program equivalence. KLEE produces a set of path
conditions that represent distinct execution paths of the two
programs along with their return values as symbolic formulas.
If it fails to establish the equivalence of the return values of
any execution path then it outputs the path condition and a
counter-example.

Our contributions are:

• A synthesis of experiences from the design of a non-trivial
modernization transformation for a real project.

• Designing and implementing a transformation validation
technique for this case study, which produces counter-
examples if two programs are not equivalent.

• Lessons learnt from using the validation technique in the
case study, including an analysis of the kind of errors that
have been identified.

To the best of our knowledge this is the first analysis of
transformation errors extracted from an industrial project of this

http://www.danfoss.com

1 Configuration config = selectedConfigParameter;
2 Option opt = selectedOptionParameter;
3 bool result = false;
4 switch (config) {
5 case config1:
6 if (opt == option1) result = true;
7 break;
8 default:
9 result = true;

10 break;
11 }
12 return result;

Fig. 1: An example input program.

1 (selectedConfigParameter == config1
2 && selectedOptionParameter == option1)
3 ? true
4 : false

Fig. 2: The output program after the transformation.

scale and complexity (4119 functions or 14502 lines of input
code of which: 105 error cases were found at transformation
time, 104 error cases were found at verification time and 3910
were successfully verified).

II. EXAMPLE

We illustrate our technique for modernizing a function
and validating its correctness by using a simple example. The
example is a simplified and anonymized version of a real
function from the Danfoss code base.

The input program (given in Fig. 1) is a
constraint-enforcing function. It checks that the
input variables selectedConfigParameter and
selectedOptionParameter have correct values with
respect to each-other and to some constants config1 and
option1. We need to turn this program in a declarative
constraint that must preserve the names of the input variables
and must compute the same truth value as the imperative
program.

Syntactically, the input program consists of a switch
statement with two cases where one of them contains an
inner if-statement. The program returns the value stored
in the variable result. The corresponding declarative C++
expression (Fig. 2) obtained by running the TXL transformation
is produced in several steps:

• The switch-statement is replaced with a nested if-
else conditional statement.

• A series of simplifications are performed on the conditional
statements, so we end up with a straightforward control
flow.

• The conditional statement is finally reduced to a ternary
expression of the form e1 ? e2 : e3.

Even for such a small example, checking that the transfor-
mation has preserved the semantics of the input program is
non-trivial. We use KLEE to symbolically execute both the
input and transformed output program to obtain all possible
symbolic execution paths. Then the input and output programs

1 (selectedConfigParameter == config1)
2 ? (selectedOptionParameter == option1)
3 : true

Fig. 3: The expected output.

are compared for equivalence, by checking whether there are
corresponding matches between the obtained path conditions.
If there exists a path condition in one program for which no
matching path condition is generated in the other, then KLEE
reports the corresponding path as a counter-example, i.e. as a
witness of an execution that is possible in one program but not
in the other.

For example, the path condition selectedConfigParmeter
6= config1 ∧ selectedOptionParameter = option1 ∧ result =
true is generated for the input program in Fig. 1 but not for
the transformed program in Fig. 2, which shows that these two
programs are not semantically equivalent. By investigating the
counter-example we are able to determine the expected output
program shown in Fig. 3.

We were also able to trace the transformation rules that were
applied to the input program and successfully diagnosed which
rule produced erroneous output. The erroneous rule was an
if-statement simplification rule which tried to simplify nested
if-statements correctly, but forgot to take the else-branch
into consideration. The verification technique was therefore
very useful in accurately tracking the places in which bugs
occur and an experienced transformation specialist would be
able to fix this issue relatively swiftly.

III. RESEARCH METHODOLOGY

We followed the general framework of action research [5].
The study can also be seen as an exploratory case study, whose
objective is to establish the feasibility of solving a concrete
industrial problem.

A. Study Description

Objective: To establish the feasibility of transforming
a large body of configuration code from an imperative imple-
mentation in C++ to a declarative model, in a manner that is
automatic, trustworthy and cost effective.

The cost effectiveness is understood as being cheaper
than reimplementing the code from scratch. The study is
exploratory, as only the problem statement is known initially.
The researchers have access to the input C++ code and to three
Danfoss engineers/architects knowledgeable about the code,
the context and the use case. The study combines engineering
(transformation development) and research (designing seman-
tically sound transformations and validating them). The case
has been initiated as a pilot project for larger modernization
activities in the same organization.

The first study proposition is to establish that freely available
transformation and validation tools are sufficiently mature
to execute this modernization process. The second study
proposition—of greater interest from a research point of view—
is to explain what kind of errors might appear in transformation
projects involving complex code, even if implemented by

2

experienced model transformation developers and language
specialists.

The case: The input code consists of 4119 C++
functions from a configuration application. These functions
encode dependencies, visibility constraints, and default values
of approximately one thousand configuration parameters of
a frequency converter. The use of C++, as opposed to C,
is modest. No object-oriented aspects are used, except for
member access and limited encapsulation. Most functions have
straightforward control flow, without goto statements, loops
and recursion. The most common statements are conditional
branching and switch statements. The rare for loops all
have a constant number of iterations. Other constructs include
variable declarations and usage of local variables in arithmetic
and comparison expressions, calls to pure functions (for instance
for converting physical units), and casts between different
types (both C-style casts and static_casts). There are
few references to static and singleton member variables and
functions, which act similarly to other function calls.

There are 14502 source lines of code (SLOC) in total
that need to be modernized in the pilot project, and more
similarly-looking configurators for other products waiting for
modernization afterwards. As many as 3348 of the 4119
functions are already in expression form; these do not need to
be modernized, but should not be broken by the modernization.
The remaining 771 functions have 14.47 SLOC of code on
average.

Goal of the modernization project: It has been decided that
this code is suboptimal from a maintenance point of view
and that it needs to be replaced by an off-the-shelf verifier
using a declarative configuration model [6]. The model has
to be trustworthy since the configuration code contains crucial
domain information; missing configuration constraints could
lead to creation of unsafe configurations by customers.

The code base in question is being actively worked on, so
a manual transformation that puts the normal development on
hold for a longer period is not possible. The modernization has
to be automatic. Automation allows to limit the time when the
code base is inaccessible for developers in two ways. First, the
development of the modernization is done by implementing a
transformation, which can be done in parallel with the evolution
of the transformed code. Secondly, the transformation itself
can be executed efficiently within minutes as opposed to weeks
if it had to be executed manually.

Theory: In principle, it is not possible to know in
advance whether refactoring the code in question preserves
semantics. Validation of the transformation itself is generally
undecidable. However, in recent years progress has been made
by recognizing that many actual analysis problems appearing
in engineering can be handled using incomplete and (partly)
unsound [7] methods. This is true in particular for bug finding,
which is our goal here. The effectiveness of the transformation
is discussed in Sect. IV, and the effectiveness of the validation
is discussed in Sect. V.

Existing model transformation validation technology (see
Sect. IX) is insufficient for the needs of this case, as it focuses on
preservation of structural properties of the transformed artifacts.

In here we need to reason about equivalence of semantics of
the transformed programs.

a) Research questions:

RQ1 Is it feasible to design the aforementioned transformation
using off-the-shelf technology in a limited time?

RQ2 What are the main obstacles and challenges in designing
and implementing the transformation? Are the transforma-
tion tools sufficiently efficient for the task?

RQ3 Can high assurance methods be used at acceptable costs
to validate the transformation?

RQ4 What kind of errors are found in a transformation
implemented by experts?

Questions RQ1–3 are interesting for companies looking into
technology transfer in modernization projects, and for research
stakeholders looking into setting up industry collaborations on
software modernization. The last research question is more
relevant for researchers in rewriting and model transformation.
We are not aware of any studies of errors in realistic software
transformations. Thus this work can be used to guide further
research in quality assurance and verification of model and
code transformations by formulating a hypothesis on what kind
of problems are worth addressing.

Methods: We decided to address RQ1 and RQ2 by
searching for the most effective way to implement a trans-
formation. We elicited the requirements from the industry
partner and evaluated a number of approaches and supporting
technologies. A similar process was executed for RQ3. We
recorded experiences during the process and report them in
this paper. For RQ2 we have collected statistics about the
effectiveness and efficiency of the transformation. For RQ3 we
have measured the ratio of false positives and explained why
they appear when following our validation methods. Regarding
RQ4, we collected counterexamples from the validation process,
classified them, and qualitatively analyzed them to understand
what kind of errors arise in the transformation.

Study Participants: Three teams have been involved
in the project: i) The industrial partner presented the soft-
ware modernization problem, requirements and artifacts. Two
engineers and one architect participated in the team. ii) The
transformation team consisted of a transformation expert, a
language semantics expert and a project leader. The transfor-
mation expert designed and implemented the transformation in
dialog with the other members of the team. iii) The validation
team consisted of a junior applied verification researcher (with
2 years of experience in verification), a junior PhD student
in programming languages, and the same language semantics
expert and project leader that were involved in designing the
transformation.

B. Threats to Validity

Construct Validity: The industrial partner had selected
the case and the problem they wanted to be solved, and the
research team only had access to the above mentioned parts
of the configurator. It may be possible that the researchers
misunderstood some aspects of the software architecture, which
would influence the validity of the results reported here;
however, we believe that the impact of this would only be
limited. First, the transformation is of substantial complexity,

3

so even if it was misaligned with the requirements, it still
sheds a lot of light on pragmatics of such transformations.
More importantly, the validation method finds actual errors that
are easy to confirm manually.

Internal Validity: Since the validation procedure has
been developed in the same study in which it is evaluated,
there is certainly a risk that it had overlooked some important
errors. The transformation had been designed with a focus
on effectiveness, with no thought of later verification in
mind. The validation project is largely independent of the
transformation project, and the key developers of the two parts
have not communicated in any significant manner at all; several
months have passed between the end of the transformation
implementation project and the beginning of the validation
project. The validation team mapped between the classes of
bugs and the programming errors causing them, so there is a
slight risk of misinterpretation. To minimize this risk, we have
cross checked the result with other team members.

External Validity: Limited external validity is in the
very nature of an individual study. For this reason we describe
the properties of the case in detail. Simple C-like code with
bounded for-loops is common in safety critical software, and
we thus believe that the findings can generalize to additional
modernization projects.

Reliability: The analyzed transformation errors can be
biased towards the weaknesses of the particular development
team. Note that the involved developers were experts in
model transformations (more than 6 years of applied research
experience) and verification (more than 6 years of experience
with program and model verification), thus it is unlikely that
the errors they made were trivial and would not happen to
other developers.

Nevertheless, we report these findings only existentially
(without quantifying them), providing a single data point for
the research space where very little evidence is available so
far. More studies are definitely needed in order to understand
the nature of design errors in transformative and generative
programming.

IV. DESIGNING THE TRANSFORMATION

A. Design Principles Established for the Project

We found that implementing an automatic transformation
is superior to a manual refactoring, as it allows to minimize
down-time on the main development of the code base. The
code to be modernized is only locked for the time it takes to
run the transformation and it can be evolved freely while the
transformation is being implemented and tested. This is some-
what different from the standard use case for transformations
which is automating repetitive tasks in conversions of data,
code or models. This transformation was meant to be executed
only once, but automation was key to minimize disruptions in
the regular development process.

Observation 1. Automatic transformations allowed us to
decouple and parallelize the regular development and the
modernization activities.

Translation of imperative C++ code into a declarative form
in general may be very complex. However, our objective

was much more modest: we only needed to handle the code
at hand (and similar). Thus we settled on saving resources
whenever possible by sacrificing generality. In fact, we even
gave up transforming the entire code at hand, agreeing that
a small number of complex fragments (involving loops) were
simpler to modernize manually rather than designing rules that
would handle them correctly from first principles. The manual
migrations can be hard-coded into a transformation as special
cases, so that the transformation execution remains automatic.

Observation 2. Since modernization is a one-off transforma-
tion it was economically beneficial to sacrifice generality, and
instead focus on the code at hand whenever it simplifies things.

To control the lack of generality, the implementation should
follow a fail-fast programming style [8], [9]. It should succeed
on the inputs that it was designed for, but it should fail
as early as possible on inputs that violate the assumptions
made when sacrificing generality (e.g. arbitrary nesting of
constructs in C++, or use of unexpected language elements).
This was achieved by making preconditions for rules as precise
as possible (so that rules are not applied when failing) and
writing explicit assertions when possible (when a rule is in
principle applicable, but it does not cover all the cases, for
simplicity of development). Without the fail-fast programming
we would have very limited trust that the transformation works
correctly on hundreds of code fragments that we were not able
to inspect manually.

Observation 3. The fail-fast programming approach helped to
avoid implementing anything that is not strictly required for
the modernization project to succeed, while retaining quality
on the expected inputs.

Initially, we considered using type analysis and other
semantic mechanisms (such as static single assignment form)
to solve the task. However, it soon became clear that this would
raise the complexity of the implementation considerably, and
likely also lead to polluting the output with identifiers generated
in the process (unfamiliar to developers). Full understanding
of static semantics might only be required if one implements a
general program rewriter. For an incomplete transformation of
a known code base it seems much easier to work with syntactic
transformations. Even typing and simple data flow information
can be captured with a finite number of patterns if we only
need to work with limited code base.

Observation 4. We found working with syntax much more
effective for an ad hoc transformation task, than when using
semantic data and semantically informed rewrites.

B. Tool Selection

Since the input language (C++) is rather complex, we
understood early on that the transformation tooling should be
driven not by our personal preferences, but by the availability of
a C++ grammar. Thus we considered using existing open source
compiler front-ends (for instance GCC2), or language tools
(such as Eclipse CDT3). However, we found them challenging
to use. Then we turned to transformation tools and found that
both Spoofax [10] and TXL [2] have C++ grammars, though the

2https://gcc.gnu.org
3http://eclipse.org/cdt/

4

https://gcc.gnu.org
http://eclipse.org/cdt/

1 rule convert_simple_sel_stmt
2 replace [selection_statement]
3 ’if ’(EXP [expression] ’)STMT [statement]
4 where not STMT [contains_selection_stmt]
5 where not STMT [is_compound_stmt]
6 construct TRUE_STMT [true_case_statement]
7 ’TRUE ’;
8 by ’(EXP ’)’? ’(STMT ’)’: ’(TRUE_STMT ’)
9 end rule

Fig. 4: An example TXL rewrite from our project: a translation
of a C++ conditional statement into a conditional expression.

grammar of the former was unmaintained and hard to migrate
to modern versions of the tool. We ended up using TXL which
has a good C++ grammar, handles ambiguity quite well and
provides mechanisms for relaxing the grammar, making it easy
to adapt to our needs. TXL is a standalone command-line tool,
with few dependencies, so it took virtually no time to get it
to run. In fact, simple proof of concept rewrites were working
after only 4 hours of experiments with TXL.

Observation 5. Simplicity and the integration with the lan-
guages to be transformed influenced the selection of tools
stronger than the properties of the transformation language or
a rewriting paradigm.

C. Transformation Implementation

TXL is a rewrite tool that transforms syntax trees into
syntax trees. It accepts two kinds of definitions: grammars and
transformations. Grammars serve for parsing and unparsing.
TXL works with one grammar at a time—in other words, the
input and output grammars must be the same. To overcome
this we selected a subset of C++ expression language as our
target language (C++ expression language is sufficiently good
to express declarative constraints over finite domain variables).
To handle this format we needed to relax the C++ grammar
only slightly to allow top-level expressions in C++. We also
wrote a simple rule that validates whether the output program
is indeed an expression in the subset of interest.

Transformation definitions specify how to rewrite a particu-
lar input syntax to output syntax. Figure 4 shows an example
transformation rule, convert_simple_sel_stmt, from
our project. All caps identifiers refer to syntax trees. The rule
matches a conditional statement without an else clause (line 3)
and translates it into a conditional expression (line 8). Lines
4–5 specify that the rule should fail if the guarded statement is
either a compound statement or another conditional statement.
Due to the grammar construction and the interaction with other
rules, this means that the rewrite will only apply to conditional
statements that themselves already guard a simple expression.
In lines 6–7 a constant true expression is constructed, which
fills in for the missing branch in the conditional expression.

The overall algorithm applied by the transformation is:

1) The program fragment is checked for format assumptions:
all branches return a value, there are no loops and
goto jumps, no calls to non-pure methods, etc. The
transformation does not establish the purity of functions
itself, but consults a white-list of names of pure functions
provided as a parameter.

2) All preprocessor #ifdef directives in the program are
cleaned up, and converted to ordinary if statements.

3) Local variable assignments are inlined in the following
expressions in the right order (i.e. going from the last
assignment to the first). When all references to the
local variables are eliminated, their declarations are also
removed.

4) All switch statements are converted to a series of if
statements.

5) Series of sequential if statements are simplified into
nested if statements, such that the fragments are reduced
to a single root statement, all additional functionality being
implemented through substatements of the root.

6) if statements are converted to ternary expressions and
return statements are replaced by the expression they
return.

Observation 6. We succeeded to implement a flow-aware
syntactic transformation, including constant folding and variable
inlining, which enabled us to produce code that uses the same
identifiers, and reminiscent structure of the input programs.

Readability of the ultimate output is important in modern-
ization projects, as it is expected that the developers will further
evolve the generated code.

D. Basic metrics

The entire transformation (including grammar definitions,
excluding white space and comments) spans 6515 lines of code.
The core C++ grammar, which is provided as a resource from
the TXL website, has 137 nonterminal rules (595 lines of code).
In addition, 98 grammar rules are defined or redefined in the
transformation to adapt the grammar to our needs.

The transformation has 468 definitions (rules or functions)
in total, where 171 of the definitions are function definitions and
the remaining 297 are rule definitions (as opposed to functions,
rules are called repeatedly until a fixed point is reached).

It took 3 months full time work of experienced software
developer to implement this transformation (including learning
TXL, domain understanding, unit testing and meetings with the
industrial partner). The cost is deemed acceptable, especially
given that the company has several more products to modernize,
that include configuration code, for which the transformation
would be largely reusable.

The transformation execution lasts 30 minutes on the 4119
functions out of which 105 functions are not handled—the
transformation reported errors, marking that these functions
contain special cases and should be migrated manually to keep
the whole process cost-effective.

V. VALIDATING THE TRANSFORMATION

A. Verification challenges

TXL is a very powerful transformation language that can
express arbitrary computation using deep pattern matching,
complex side conditions, global state and rewriting. Individual
rules and functions of a transformation are non-modular and
might intermediately break syntactic and semantic correctness
properties. This makes it hard to verify individual rules. Instead,
it is important that the transformation is validated as a whole.

5

Observation 7. Our transformation was written in a non-
modular fashion (as most transformations we have seen). This
made it hard to verify the transformation rules individually.

Our transformation makes heavy use of the generic pro-
gramming and dynamic reparsing features which allow seri-
alization of abstract syntax trees to textual syntax and then
reinterpretation as other syntactic structures. An external script
controls the sequence of transformation steps, adding even more
complexity to the algorithm. Furthermore, the rules are designed
in an ad hoc fashion specifically to handle patterns present
in the use case. For example, we use the transformation rule
if (E)return true → returnE, which is not correct in
general, but it is correct under assumption that the if statement
occurs last in the main function. To combat this complexity,
our verification method treats the transformation as a black-
box and checks that the input and corresponding transformed
output agree semantically. This works since the size of input
is manageable and we do not expect the transformation to be
generally applicable in other unrelated settings.

Observation 8. We were able to treat a complex transformation
as a black-box, reducing the validation to checking whether
the provided input and transformed output agree according to
specific semantic properties.

B. Approach

Ordinary TXL rules and functions are constrained to
replacing well formed syntactic trees with newly built ones,
effectively making it impossible for TXL programs to produce
syntactically incorrect output. The correctness criterion of the
transformation was to produce semantically equivalent C++
programs. Therefore our validation technique must be able to
reason about the semantics of C++ programs.

We considered several abstract interpretation and analysis
techniques and we found that symbolic execution [3] is able
to build a very precise semantic model. We decided on using
the precise symbolic executor KLEE [4] which handles the
majority of features used in the code at hand, and integrating
it in the automation process proved to be cost-effective.

One of the challenges of using KLEE is that it requires
the input code be compiled to LLVM [11] intermediate
representation (LLVM-IR), including all external libraries
(otherwise the symbolic execution may not terminate or provide
incomplete results). However, our sample code-base consisted
of individual functions which called external functions with
unknown implementations. Therefore, we had to close the code
with suitable instrumentation:

1) We created stubs for unknown functions—ordinary, static
member and singleton member functions alike—such that
a set of arguments is matched to the same symbolic result
on every call.

2) We created stubs for the data structures with straight-
forward constructors (that initialize all members) and
structural equality comparison operations.

Function stubs are created in the symbolic function [12]
style. For each stub an execution table which matches input
arguments with symbolic return values is allocated. When the
function is called, it looks up the arguments in the execution

1 bool defined(int p) {
2 static node<int, bool> *results;
3 static int* counter = new int(0);
4 bool* val = new bool;
5 if(!getResult(&results, &results, p, counter, val)) {
6 char symbolicname[40];
7 sprintf(symbolicname, "defined%d", *counter);
8 *val = klee_range(0, 2, symbolicname);
9 }

10 return *val;
11 }

Fig. 5: A stub for an unknown Boolean function.

table: if they are found, it returns the same symbolic result as
before; otherwise, a new record that stores the arguments along
with a fresh symbolic result variable is created in the table.

Figure 5 shows a stub for an unknown Boolean function.
The static execution table results and call counter are reused
for all calls to the function. The function getResults looks
up the input argument p in the execution table. If found, the
existing symbolic variable is returned through the pointer
val. Otherwise, the call counter is incremented and val
points to a new memory address which is made symbolic
with klee_range and returned.

Observation 9. We were able to use off-the-shelf tools to
perform semantic verification of programs, with a moderate
amount of effort required to pre-process the input to the tool.

C. Research questions

In the experiment we answer the following detailed ques-
tions, refining RQ3:

RQ3.1 How large a part of the transformed code base can
be verified automatically?

RQ3.2 How much additional effort would it require to
verify the rest of the code base?

RQ3.3 How can our verification effort be generalized to
other similar modernization projects?

D. Method

We address RQ3.1 in Section VI by running the verifi-
cation procedure on the input and transformed output, and
reporting and classifying the results. Section VIII discusses the
challenges (and solutions to these challenges) that appeared
during verification (RQ3.2) and what parts of our verification
procedure is generalizable to other transformation tools and
projects (RQ3.3).

The validation execution lasts 7 minutes on all the trans-
formed functions out of which 3348 are evaluated trivially to
pass verification–the output is identical to the input.

VI. BUG ANALYSIS

A. Bugs in Numbers

Out of the 4119 functions in the code base there were
771 which could not be validated trivially (the output was not
identical to the input). We present the statistics in Table I.

6

Observation 10. It was possible to analyze a substantial
amount of the modernized code automatically, and only 20
corner cases were left to be handled manually.

We analyze the bugs found by verification (3 & 4b) below.
In Section VIII we will discuss the types of spurious counter-
examples (4c), the unhandled cases due to design limitations
(5), and propose solutions for these issues.

B. Analysis of Bugs Found by Verification

Our technique had identified seven bugs present in the
transformation. While these bugs varied in nature, they had one
important thing in common: they were all related to execution
semantics and would have been hard to find with a syntactic
check or simpler static semantics check (like a type system).

Observation 11. When the code base of our modernization
project reached a certain complexity it became infeasible to
find all bugs through expertise and unit testing. Validation of
semantics was essential to ensure that the output code worked
correctly.

Bug 1: Function call is dropped in some paths. Perhaps the
most widespread output errors were missing function calls—
absent in the output expression but present in the original code.
This happened with a variety of calls to different functions,
and could happen multiple places in the output expression;
furthermore, calls to the same function might still be present
in other branches of the output expression.

The bug was caused by an incomplete rewrite rule. When a
rule matches a functional call in a return statement and forgets
to reinsert the function call on replacement.

Bug 2: Structure replaced by a constant integer. Another
simple bug is the one where the input declares a variable of a
class type, calls its object initializer with multiple arguments
and returns it. Here, the transformation seems to return the
first argument given to the variable—which is often an integer
and therefore having incompatible type—instead of the whole
object.

This bug also happens due to misuse of deep pattern search
and a broken rule assumption. It happens when trying to inline
a variable with its initial value, but expecting the variable to be
of a simple type. Since there is a use of a deep pattern search to
extract an expression from the initialiser, it will simply pick the

TABLE I: Erroneous transformation cases caught by each step
of the validation process.

Step #Cases

1 Failing transformation precondition (not handled, requiring manual
inspection)

105

2 Failing silently due to unhandled syntactic structures (caught stati-
cally during preliminary steps of verification)

3

3 Caught by C++ compiler 3
4 Checked for equivalence using KLEE 640
4a Validated being equivalent 562
4b Concrete bug cases with provided counter-examples 50
4c False positives with spurious counter-examples (due to over-

approximation of functions, and representation mismatch)
28

5 Unhandled cases containing assertions (intentional, due to design
limitations of the validation technique)

20

first one (ignoring the others) and the rest of the transformation
would continue without noticing the bug.

Bug 3: Conditional branches are dropped. This bug caused
the transformation to ignore all branches following a nested
if-statement (also referred to in Section II). It was caused by
incomplete rewrite rules. The rewrite rule matches a nested
conditional followed by other branches, and then rewrites the
conditional correctly but forgets to handle the other branches.

Bug 4: The unexpected exceptions. This bug is surprising and
happens mostly in very large functions with complex nesting of
conditional control flow. While the input function seems total
and returns a correct result on all paths, the transformation
produces an output which contains a branch that throws an
exception stating that the branch should be invalid.

This bug happens due to overconstrained pattern matching
and broken rule assumption. When a sequential composition of
nested conditional followed by a return statement is matched
by the transformation, it tries to put the final return statement
inside the previous conditionals. However, in this case the
pattern was overconstrained and so it did not match the form
of input it was given; later, when the transformation tries to
convert the statement to an expression it finds a branch with no
return statements and replaces it with a throw statement
because it did not expect this case to be possible (a part of the
fail-fast approach).

Bug 5: Use of undeclared variables. This bug is the only one
that appears during compilation. The original input contained
declarations to local variables that were not inlined correctly and
the transformation removed all local declarations—but retained
references to their respective identifiers—leaving compiler
errors.

This bug occurs due to a combination of dynamic reparsing
capabilities and wrong target type in expression. To control the
number of iterations of inlining substitution, the transformation
replaces variable nodes with the string representation of their
assigned expressions, using the textual output capabilities of
TXL. This ensures that the substitution terminates, but might
also be incorrect if the transformation has not finished migrating
the serialised subtrees. In general, it is caused by challenges in
implementing a semantic operation (i.e. inlining) syntactically.

Bug 6: Negation dropped in result. The simplest bug found
by the KLEE-based verifier is where the transformation had
transformed the whole input correctly except a negation
operation which was missing in the output. This bug occurs
due to misuse of deep pattern search of TXL. The rewrite rule
searches for a more specific object type than necessary, making
it ignore more complex objects that do not fit to the expected
pattern.

Bug 7: Conditional with error code assignment dropped. One
interesting bug is where the input has a function which contains
a conditional statement that assigns a value to an error code
pointer variable, in addition to returning a value (both in the
conditional and outside). In this case, the transformation will
produce output that will completely remove the conditional
branch and only keep the final return value, which makes the
function produce the wrong result.

This bug happens due to the dynamic reparsing capabilities
and eager removal of source data. It originates in the inlining

7

phase where some abstract syntax is broken by wrongly inserted
textual syntax, and subsequently a rule that removed empty
conditional branches was applied.

Bug 8: Variable declarations without assignment not han-
dled. This bug was caught statically in the cases when the
transformation finished, but the output was empty. Similar to
Bug 2, a combination of a broken rule assumption and misuse
of deep pattern search was the cause of this bug. In ordinary
circumstances, the transformation tries to inline all locally
declared variables with their assigned expressions and then
remove the declarations. However, in these cases the declaration
and initialization of the local variables were situated in separate
statements. The declaration removal rule used deep search to
identify statements which contained local variables and since
program consistent of one large if-statement containing the
assignments, it was completely removed.

Classification summary: Most cases were affected by
bug 1 where there were 23 cases in total, and followed by
bug 2 which had 15 cases in total; both of which were simple
in nature. This is perhaps unsurprising since function calls
and object initialisations are common constructs in C++, and
a simple mistake in the transformation of these features will
therefore affect a large number of analyzed functions. The
more interesting (complex) bugs 3 and 4 had 5 cases in total
each. This type of bugs often appeared in larger files with
a complex nesting of conditionals, and would therefore have
been hard to immediately spot manually or with simpler unit
tests. Finally, the remaining bugs (5, 6, 7, 8) had 3, 1, 1 and
3 cases in total, respectively. These errors represent issues
that appear to be corner cases that were either not caught by
the preconditions of the transformation, or occurred where an
intermediate assumption of the transformation was wrong.

Observation 12. Simple bugs hit wide, complex bugs hit deep.
Simple semantic errors affected a large number of functions
while complex errors were found in a few but bigger functions.

VII. FORMAL JUSTIFICATION OF THE PROCEDURE

A. Concrete execution

The transformation translates many functions individually.
Each of them needs to be translated in a semantics preserving
manner. We view functions (or programs in general) as input–
output relations.

Definition 1. A program P is a set of imperative instructions
that state how to calculate the designated output variable ret
from a set of input variables Var in = {i1, . . . , ik}.
Definition 2. A concrete state (store) σ is a function mapping
program variables Var into values Val , i.e. σ : Var → Val .
The values Val are constants from ordinary C++ types: Boolean,
bounded integer, float, etc.

A concrete execution starts with an initial state, σin, where
all input variables are assigned some initial values. During
the execution of the program, the effect of executing each
statement s in a state σ produces a successor state σ′, written
as σ s−→ σ′. When there are no statements left to execute, the
program reaches a final state σout, in which the value of the
output variable ret is well-defined.

Definition 3. A concrete execution path π = σin, σ1, . . . σout
of the program P is a sequence of states, such that σin is an
initial state, every next state in the sequence is obtained by
sequentially executing statements from P one by one, and σout
is the final state.

Definition 4 (Concrete program path semantics). The path
semantics of program P—called JP Ktrace—is defined to be
the set of all valid concrete execution paths π of P .

Definition 5 (Denotational program semantics). The denota-
tional semantics of program P is a partial function JP K :
Valk ⇀ Val defined by: JP K(σin(i1), . . . , σin(ik)) = σout(ret),
for any concrete execution path π ∈ JP Ktrace = (σin, . . . , σout).

Definition 6 (Semantic equivalence). Two programs P and
P ′ are semantically equivalent, written P ∼ P ′, if for any
collection of values v1, . . . , vk it holds: JP K(v1, . . . , vk) =
JP ′K(v1, . . . , vk) .

Determining the semantic equivalence of programs using
concrete path semantics is infeasible due to the immense range
of input values. Instead, we use symbolic execution to cluster
the input values using a set of constraints called path conditions.

B. Symbolic execution

In symbolic execution the program does not assign values to
its variables; instead, it assigns symbolic expressions containing
uninterpreted symbols abstractly representing user-assignable
values in a concrete execution of the program. For ease of
notation, we will use capital letters X,Y, . . . to represent
uninterpreted symbols, and we use Sym to represent the set of
all of these symbols. In the initial execution state, each possible
input variable i is usually assigned a corresponding unique
symbol I .

For example, let x and y be input integer variables. The con-
crete semantics of ret = x+y is the set {([x 7→ 0, y 7→ 0], [x 7→
0, y 7→ 0, ret 7→ 0]), ([x 7→ 0, y 7→ 1], [x 7→ 0, y 7→ 1, ret 7→
1]), . . .}, where initial states are all possible assignments of
integer values to x and y. However, the symbolic path semantics
of ret = x+ y will contain only one symbolic execution path
([x 7→ X, y 7→ Y], [x 7→ X, y 7→ Y, ret 7→ X + Y]), where X
and Y are symbols.

Symbolic execution confounds a set of different concrete
paths into one by following all branches whenever a branching
or looping statement is encountered. In the same time, for
each branch it maintains a set of constraints called the path
condition, which must hold on the execution of that path.

Definition 7. A symbolic expression se from the set SExp can
be built out of constant values from Val , symbolic values from
Sym , and arithmetic-logic operations.

Definition 8. A symbolic state σ# is a function mapping
program variables Var into symbolic expressions SExp, i.e.
σ# : Var → SExp. The initial symbolic state σ#

in maps all
input variables i ∈ Var in into a fresh symbolic value I ∈ Sym .

Definition 9 (Constrained symbolic state). A constraint is a
Boolean symbolic expression. A constrained symbolic state is
a pair 〈σ#, sb〉, which constraints the symbolic expressions in
σ# with a Boolean symbolic expression sb.

8

Definition 10 (Symbolic execution path). A symbolic execution
path of the program P is a sequence of constrained symbolic
states (〈σ#

in , true〉, 〈σ#
1 , sb1〉, . . . 〈σ#

out, sbout〉), where the initial
state σ#

in is unconstrained, and the constraint produced for the
final state, sbout, represents the path condition.

It is notable that the resulting set of symbolic execution
paths partitions the set of concrete execution paths. For
the program that computes the absolute value of an integer
variable i, there are two different paths returned by symbolic
execution:

(
〈[i 7→ I], true〉, 〈[i 7→ I, ret 7→ I], I ≥ 0〉

)
and(

〈[i 7→ I], true〉, 〈[i 7→ I, ret 7→ −I], I < 0〉
)
. If the initial

value of i is non-negative, then the return value is the symbolic
expression I; otherwise, the return value is −I . Hence, the set
of all concrete execution paths (determined by the input values
of i) has been partitioned in two sets: those for which i ≥ 0
holds and those for which i < 0 holds.

Proposition 1. For each concrete execution path π =
(σin, σ1, . . . σout) of the program P , there exists the corre-
sponding symbolic execution path π# = (〈σ#

in , true〉, . . .
〈σ#

out, sbout〉), such that σ#
in = [i1 7→ I1, . . . , ik 7→ Ik],

σout(ret) = σ#
out(ret)[I0 7→ σin(i0), . . . , Ik 7→ σin(ik)], and

sbout[I0 7→ σin(i0), . . . , Ik 7→ σin(ik)] is true.

Proof: See online appendix 4.

Theorem 1. Two programs P and P ′ are semantically equiv-
alent P ∼ P ′ iff for each valuation V ∈ Val it holds:

(j∨
1..m

sbjout ∧ σ#,j
out (ret) = V

)
⇐⇒

(i∨
1..m′

sb′
i
out ∧ σ′#,i

out (ret) = V
)

where (〈σ#,1
in , true〉, . . . 〈σ#,1

out , sb
1
out〉), . . . , (〈σ#,m

in , true〉, . . . 〈σ#,m
out ,

sbmout〉) are symbolic paths of P , and (〈σ′#,1
in , true〉, . . . 〈σ′#,1

out , sb
′1
out〉),

. . . , (〈σ′#,m′

in , true〉, . . . 〈σ′#,m′

out , sb′
m′

out 〉) are symbolic paths of P ′.

Proof: It follows from Prop. 1 and Def. 6.

VIII. DISCUSSION

A known challenge of action research in software engi-
neering is unreliability of academic tools. Tools developed by
academic partners are rarely adopted in companies due to a
lack of reliable support service (unless the industrial partner
can reasonably take over the tool maintenance itself). This is
apparently a much smaller problem in software modernization
projects, as the tools are only used for a short period. We note
that modernization is a very good domain for research-based
tools, where the actual adoption is likely easier than elsewhere.

The applied design and validation principles translate easily
to other program and model-transformation languages. All such
languages work at the level of (abstract) syntax, so designing the
rewriter syntactically is achievable. Since we validate the output
of the transformation against the input, but the transformation
itself is treated as a black-box, the method is oblivious to the
choice of the transformation language. Because of that, it could
work even for manual transformations, for instance for manual
refactoring. However it is unclear, whether the identified bugs
are specific to this case, this input and output languages, and
TXL.

4http://www.itu.dk/people/afla/files/ase-2015-appendix/prop1-proof.html

We have met the following technical verification challenges:

1) Representation of Boolean expressions: In C++ any
integer valued expression can be used as a logical condition
(inside if-statements etc.), and so any non-zero value would
count as true and zero would count as false. If an integer
variable a is used only as a logical condition both in the
input and output programs it would be pragmatically fine.
However, our transformation contains simplification rules which
convert statements of form if (a) return true; else
return false; to return a; which clearly has different
semantics. In cases where we are certain that specific integer
variables are only used as conditionals we instruct KLEE to
assume that these variables have values lying in range [0, 2).

2) Over-approximation of Function Semantics: Because
we do not know the implementation of all external functions,
we use an over-approximated function call representation
with stubs that simply map equal parameters to equal unique
symbolic results. However, if any of these functions actually
had equivalent implementations and we used a different stub
for each one, calling the two stubs with the same parameters
would result in distinct return values. This led to a number of
false positives where KLEE decided that the input and output
programs were not equivalent. This was solved by using the
same stub for functions which were known to be identical a
priori.

3) Assertions: When KLEE meets a C++ assertion that
has a failing condition on a possible path, it will immediately
halt execution for that particular path. This concretely means
that it will never check whether the input and output functions
have the same results, or in this case rather both fail. Instead
of using the default assertion function, one could instead use
a stub that throws a recoverable error (rather than halt) on
failing conditions; thereafter, one could check whether both the
input and output programs failed on the same paths and if they
did one could consider the paths to be equal. Our code base
contains 20 cases affected by this limitation, but implementing
the suggested solution was not feasible in the allocated time.

IX. RELATED WORK

Translation validation [13] is a verification technique for
translator tools (compilers, code generators). It requires a
common semantic framework for the representation of the
source code and the generated target code, a formalization of
the notion of correct implementation and a method which allows
to prove that one model of the semantic framework, representing
the produced target code, correctly implements another model
which represents the source. Our approach is aligned with
translation validation in the sense that it validates concrete
translations instead of the transformation tool or algorithm. The
path conditions produced by KLEE are a semantic framework
of the compared C++ programs. KLEE uses an SMT solver
to prove the equivalence of the path conditions and provides a
counter example when they are not equivalent.

Other KLEE extensions aim to solve the same problem.
UC-KLEE [14] can save and load program states so it can
execute two programs in the exact same memory context. By
comparing memory states at program termination UC-KLEE
offers a more precise equivalence test which also covers
programs that terminate unexpectedly (crash). The task would

9

http://www.itu.dk/people/afla/files/ase-2015-appendix/prop1-proof.html

have been easier to solve with UC-KLEE, but we used regular
KLEE because there was no release of UC-KLEE available.

KLEE-FP [15] proves the equivalence of two symbolic
floating point expressions by first applying a series of expression
canonicalization rules, and then syntactically matching the two
expressions, whereas regular KLEE silently concretizes floating
point values to zero. However, when we used it to validate
our transformations it failed to identify some of the bugs that
regular KLEE had previously found and did not reveal any new
bugs. We did not investigate this further.

Proof of program transformation correctness is often studied
in conjunction with optimization. Parametrized equivalence
checking (PEC) [16] uses a form of translation validation
which tries to find a bisimulation between the control flow
graphs of the original and optimized programs in a way
that parameterizes over some program components (such as
expressions, statements and declarations). Other work [17]
specifies the optimisation rewrite rules as temporal logic
formulas, and proves the correctness of the transformation
manually. Both techniques lack tools that support them.

Currently, there exist various robust techniques for verifying
preservation of properties by model transformations [18]–[21].
These techniques use (bounded) model finders and SMT solvers
to verify the preservation of structural properties of model
transformation rules. However, our interest lies in checking
behavioral equivalence between the input and output, which is
significantly more complex to check than structural properties,
and thus not supported by the presented techniques.

A similar automation-based modernization effort is pre-
sented in a joint project by Semantic Designs (SD)5 and
Boeing6 [22] which uses Semantic Designs’s commercially-
available transformation and analysis tool DMS [23] to convert
an old component-based C++ codebase to a standardized
CORBA [24] architecture. Our case study shows that it is
possible to do automation-based modernization relying solely
on freely available tools (TXL, etc.), and we were able to
present additional useful observations. More importantly, our
evaluation effort is significantly larger and includes validation
in addition to rigorous testing and code reviews, which we
have shown to be useful since it caught many subtle bugs and
corner cases that were missed earlier in the process.

A series of papers [25]–[27] discuss a similar case study
that aims to design and verify a model transformation for
modernizing an existing collection of proprietary models such
that they conform to the standardised AUTOSAR [28] format.
The transformation [25] was initially encoded in a (non-Turing
complete) subset of the ATL model transformation language
[29] and then verified for structural properties [26]. The same
verification effort was then repeated [27] more efficiently by
by symbolically executing a version of the transformation re-
encoded in DSLTrans [30]. While these verification tools and
the presented case study have significant contributions to the
model transformations community, they were not applicable in
our study due to the difference in expressiveness between TXL
and the verified non-Turing-complete subset of ATL/DSLTrans,
and the complexity of the property we wanted to check
(behavioral equivalence versus structural properties).

5https://www.semanticdesigns.com
6http://www.boeing.com

X. CONCLUSION

We have reported experiences from an industrial software
modernization project, including requirements elicitation for a
code-to-model transformation, designing and implementing the
transformation, and verifying the correctness of the transforma-
tion against semantic properties using symbolic execution. The
project allowed us to derive observations regarding automation
in software modernization as well as choices and challenges
in design and validation of modernization transformations.
Probably, the biggest technical challenge seen in the transfor-
mation is that it seems impossible to reason about it inductively
(rule-by-rule), because the intermediate transformation results
are incorrect by design. Moreover, our method is oblivious
to complexity of the transformation language, but since it
is property driven, it depends strongly on the properties of
the transformed languages. Observe though that, a white-box
method would be vulnerable to both kinds of complexity.

Our validator finds many semantic bugs that have been
missed by unit tests of an experienced transformation developer.
These errors would be very difficult to find without verification.
For each bug, the tool provides a counter-example consisting
of execution paths on which the input and transformed
programs differ. This way, we have obtained helpful debugging
information, which can be used to improve and correct the
transformation. We group the identified bugs into seven classes.
Our paper is, to the best our knowledge, the first ever
study reporting errors from a realistic transformation project,
including validation using real bugs (as opposed to planted
bugs) and operational semantic properties of input and output
(as opposed to syntactic and typing properties).

Acknowledgements We thank Karl Potratz for introducing us
to the subject system, Rolf Helge-Pfeiffer for implementing
the transformation and Claus Brabrand for discussions on its
design. The project was supported by The Danish Council for
Independent Research under a Sapere Aude project, VARIETE,
and by ARTEMIS JU under grant agreement n◦295397 together
with Danish Agency for Science, Technology and Innovation.

REFERENCES

[1] J. Penix, “Big problems in industry (panel),” in 2013 28th IEEE/ACM
International Conference on Automated Software Engineering, ASE
2013, Silicon Valley, CA, USA, November 11-15, 2013, E. Denney,
T. Bultan, and A. Zeller, Eds. IEEE, 2013, p. 3. [Online]. Available:
http://dx.doi.org/10.1109/ASE.2013.6693060

[2] J. R. Cordy, “The TXL source transformation language,” Sci. Comput.
Program., vol. 61, no. 3, pp. 190–210, 2006. [Online]. Available:
http://dx.doi.org/10.1016/j.scico.2006.04.002

[3] J. C. King, “Symbolic execution and program testing,” Commun.
ACM, vol. 19, no. 7, pp. 385–394, 1976. [Online]. Available:
http://doi.acm.org/10.1145/360248.360252

[4] C. Cadar, D. Dunbar, and D. R. Engler, “KLEE: unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in 8th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2008, December 8-10, 2008, San Diego,
California, USA, Proceedings, R. Draves and R. van Renesse,
Eds. USENIX Association, 2008, pp. 209–224. [Online]. Available:
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf

[5] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, and B. Regnell,
Experimentation in Software Engineering. Springer, 2012. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-29044-2

[6] A. Felfernig, L. Hotz, C. Bagley, and J. Tiihonen, Knowledge-based
Configuration: From Research to Business Cases, 1st ed. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2014.

10

https://www.semanticdesigns.com
http://www.boeing.com
http://dx.doi.org/10.1109/ASE.2013.6693060
http://dx.doi.org/10.1016/j.scico.2006.04.002
http://doi.acm.org/10.1145/360248.360252
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://dx.doi.org/10.1007/978-3-642-29044-2

[7] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N. Amaral, B. E.
Chang, S. Z. Guyer, U. P. Khedker, A. Møller, and D. Vardoulakis, “In
defense of soundiness: a manifesto,” Commun. ACM, vol. 58, no. 2, pp.
44–46, 2015. [Online]. Available: http://doi.acm.org/10.1145/2644805

[8] J. Gray, “Why do computers stop and what can be done about it?” in
Fifth Symposium on Reliability in Distributed Software and Database
Systems, SRDS 1986, Los Angeles, California, USA, January 13-15,
1986, Proceedings. IEEE Computer Society, 1986, pp. 3–12.

[9] J. Shore, “Fail fast,” IEEE Software, vol. 21, no. 5, pp. 21–25, 2004.
[Online]. Available: http://doi.ieeecomputersociety.org/10.1109/MS.2004.
1331296

[10] L. C. L. Kats and E. Visser, “The spoofax language workbench: rules
for declarative specification of languages and ides,” in Proceedings
of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2010,
October 17-21, 2010, Reno/Tahoe, Nevada, USA, W. R. Cook, S. Clarke,
and M. C. Rinard, Eds. ACM, 2010, pp. 444–463. [Online]. Available:
http://doi.acm.org/10.1145/1869459.1869497

[11] C. Lattner and V. S. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in 2nd IEEE / ACM International
Symposium on Code Generation and Optimization (CGO 2004), 20-24
March 2004, San Jose, CA, USA. IEEE Computer Society, 2004, pp.
75–88. [Online]. Available: http://dx.doi.org/10.1109/CGO.2004.1281665

[12] R. Corin and F. A. Manzano, “Efficient symbolic execution for
analysing cryptographic protocol implementations,” in Engineering
Secure Software and Systems - Third International Symposium,
ESSoS 2011, Madrid, Spain, February 9-10, 2011. Proceedings, ser.
Lecture Notes in Computer Science, Ú. Erlingsson, R. Wieringa, and
N. Zannone, Eds., vol. 6542. Springer, 2011, pp. 58–72. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-19125-1_5

[13] A. Pnueli, M. Siegel, and E. Singerman, “Translation validation,” in
Tools and Algorithms for Construction and Analysis of Systems, 4th
International Conference, TACAS ’98, Held as Part of the European
Joint Conferences on the Theory and Practice of Software, ETAPS’98,
Lisbon, Portugal, March 28 - April 4, 1998, Proceedings, ser. Lecture
Notes in Computer Science, B. Steffen, Ed., vol. 1384. Springer, 1998,
pp. 151–166. [Online]. Available: http://dx.doi.org/10.1007/BFb0054170

[14] D. A. Ramos and D. R. Engler, “Practical, low-effort equivalence
verification of real code,” in Computer Aided Verification - 23rd
International Conference, CAV 2011, Snowbird, UT, USA, July
14-20, 2011. Proceedings, ser. Lecture Notes in Computer Science,
G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806. Springer,
2011, pp. 669–685. [Online]. Available: http://dx.doi.org/10.1007/
978-3-642-22110-1_55

[15] P. Collingbourne, C. Cadar, and P. H. J. Kelly, “Symbolic crosschecking
of floating-point and SIMD code,” in European Conference on
Computer Systems, Proceedings of the Sixth European conference on
Computer systems, EuroSys 2011, Salzburg, Austria, April 10-13, 2011,
C. M. Kirsch and G. Heiser, Eds. ACM, 2011, pp. 315–328. [Online].
Available: http://doi.acm.org/10.1145/1966445.1966475

[16] S. Kundu, Z. Tatlock, and S. Lerner, “Proving optimizations correct
using parameterized program equivalence,” in Proceedings of the
2009 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2009, Dublin, Ireland, June 15-21, 2009,
M. Hind and A. Diwan, Eds. ACM, 2009, pp. 327–337. [Online].
Available: http://doi.acm.org/10.1145/1542476.1542513

[17] D. Lacey, N. D. Jones, E. V. Wyk, and C. C. Frederiksen, “Compiler
optimization correctness by temporal logic,” Higher-Order and Symbolic
Computation, vol. 17, no. 3, pp. 173–206, 2004. [Online]. Available:
http://dx.doi.org/10.1023/B:LISP.0000029444.99264.c0

[18] F. Büttner, M. Egea, and J. Cabot, “On verifying ATL transformations
using ’off-the-shelf’ SMT solvers,” in Model Driven Engineering
Languages and Systems - 15th International Conference, MODELS
2012, Innsbruck, Austria, September 30-October 5, 2012. Proceedings,
ser. Lecture Notes in Computer Science, R. B. France, J. Kazmeier,

R. Breu, and C. Atkinson, Eds., vol. 7590. Springer, 2012, pp. 432–448.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-33666-9_28

[19] F. Büttner, M. Egea, J. Cabot, and M. Gogolla, “Verification
of ATL transformations using transformation models and model
finders,” in Formal Methods and Software Engineering - 14th
International Conference on Formal Engineering Methods, ICFEM
2012, Kyoto, Japan, November 12-16, 2012. Proceedings, ser.
Lecture Notes in Computer Science, T. Aoki and K. Taguchi,
Eds., vol. 7635. Springer, 2012, pp. 198–213. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-34281-3_16

[20] F. Büttner, M. Egea, E. Guerra, and J. de Lara, “Checking
model transformation refinement,” in Theory and Practice of
Model Transformations - 6th International Conference, ICMT 2013,
Budapest, Hungary, June 18-19, 2013. Proceedings, ser. Lecture
Notes in Computer Science, K. Duddy and G. Kappel, Eds.,
vol. 7909. Springer, 2013, pp. 158–173. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-38883-5_15

[21] X. Wang, F. Büttner, and Y. Lamo, “Verification of graph-based
model transformations using alloy,” ECEASST, vol. 67, 2014. [Online].
Available: http://journal.ub.tu-berlin.de/eceasst/article/view/943

[22] R. L. Akers, I. D. Baxter, M. Mehlich, B. J. Ellis, and K. R.
Luecke, “Case study: Re-engineering C++ component models
via automatic program transformation,” Information & Software
Technology, vol. 49, no. 3, pp. 275–291, 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.infsof.2006.10.012

[23] I. Baxter, C. Pidgeon, and M. Mehlich, “DMS R©: program transforma-
tions for practical scalable software evolution,” in Software Engineering,
2004. ICSE 2004. Proceedings. 26th International Conference on, May
2004, pp. 625–634.

[24] J. Siegel, Ed., CORBA 3 fundamentals and programming, 2nd ed. New
York: OMG Press, John Wiley & Sons, 2000.

[25] G. M. K. Selim, S. Wang, J. R. Cordy, and J. Dingel,
“Model transformations for migrating legacy deployment models
in the automotive industry,” Software and System Modeling,
vol. 14, no. 1, pp. 365–381, 2015. [Online]. Available: http:
//dx.doi.org/10.1007/s10270-013-0365-1

[26] G. M. K. Selim, F. Büttner, J. R. Cordy, J. Dingel, and S. Wang,
“Automated verification of model transformations in the automotive
industry,” in Model-Driven Engineering Languages and Systems - 16th
International Conference, MODELS 2013, Miami, FL, USA, September
29 - October 4, 2013. Proceedings, ser. Lecture Notes in Computer
Science, A. Moreira, B. Schätz, J. Gray, A. Vallecillo, and P. J. Clarke,
Eds., vol. 8107. Springer, 2013, pp. 690–706. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-41533-3_42

[27] G. M. K. Selim, L. Lucio, J. R. Cordy, J. Dingel, and B. J. Oakes,
“Specification and verification of graph-based model transformation
properties,” in Graph Transformation - 7th International Conference,
ICGT 2014, Held as Part of STAF 2014, York, UK, July 22-24, 2014.
Proceedings, ser. Lecture Notes in Computer Science, H. Giese and
B. König, Eds., vol. 8571. Springer, 2014, pp. 113–129. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-09108-2_8

[28] S. Bunzel, “AUTOSAR - the standardized software architecture,”
Informatik Spektrum, vol. 34, no. 1, pp. 79–83, 2011. [Online].
Available: http://dx.doi.org/10.1007/s00287-010-0506-7

[29] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model
transformation tool,” Sci. Comput. Program., vol. 72, no. 1-2, pp. 31–39,
2008. [Online]. Available: http://dx.doi.org/10.1016/j.scico.2007.08.002

[30] B. Barroca, L. Lucio, V. Amaral, R. Félix, and V. Sousa, “Dsltrans:
A turing incomplete transformation language,” in Software Language
Engineering - Third International Conference, SLE 2010, Eindhoven,
The Netherlands, October 12-13, 2010, Revised Selected Papers, ser.
Lecture Notes in Computer Science, B. A. Malloy, S. Staab, and
M. van den Brand, Eds., vol. 6563. Springer, 2010, pp. 296–305.

[Online]. Available: http://dx.doi.org/10.1007/978-3-642-19440-5_19

11

http://doi.acm.org/10.1145/2644805
http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331296
http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331296
http://doi.acm.org/10.1145/1869459.1869497
http://dx.doi.org/10.1109/CGO.2004.1281665
http://dx.doi.org/10.1007/978-3-642-19125-1_5
http://dx.doi.org/10.1007/BFb0054170
http://dx.doi.org/10.1007/978-3-642-22110-1_55
http://dx.doi.org/10.1007/978-3-642-22110-1_55
http://doi.acm.org/10.1145/1966445.1966475
http://doi.acm.org/10.1145/1542476.1542513
http://dx.doi.org/10.1023/B:LISP.0000029444.99264.c0
http://dx.doi.org/10.1007/978-3-642-33666-9_28
http://dx.doi.org/10.1007/978-3-642-34281-3_16
http://dx.doi.org/10.1007/978-3-642-38883-5_15
http://journal.ub.tu-berlin.de/eceasst/article/view/943
http://dx.doi.org/10.1016/j.infsof.2006.10.012
http://dx.doi.org/10.1007/s10270-013-0365-1
http://dx.doi.org/10.1007/s10270-013-0365-1
http://dx.doi.org/10.1007/978-3-642-41533-3_42
http://dx.doi.org/10.1007/978-3-319-09108-2_8
http://dx.doi.org/10.1007/s00287-010-0506-7
http://dx.doi.org/10.1016/j.scico.2007.08.002
http://dx.doi.org/10.1007/978-3-642-19440-5_19

