
Probabilistic Programming for Voucher Information
Extraction

Preliminary Practical Experiences

Ahmad Salim Al-Sibahi
University of Copenhagen/Skanned
ahmad@{di.ku.dk,scanned.com}

Thomas W. Hamelryck
University of Copenhagen
thamelry@binf.ku.dk

Fritz Henglein
University of Copenhagen

henglein@diku.dk

OCR Feature 
Extraction

Sender

Recepient

Total Amount

Figure 1. Skanned’s Voucher Scanning Pipeline

1 Introduction
Skanned is a service provider whose main service is to pro-
vide other companies integration with its Voucher Scan-
ning (VS) system. The VS system (fig. 1) allows extracting
information—sender, receiver, amounts—from accounting
documents like receipts, invoices, and credit notes. Such task
is inherently amendable to probabilistic reasoning: vouchers
vary heavily in layout and content, and it is not possible in
general to determinstically cover all case while preserving
accuracy. Concretely, we will in this paper discuss:

• Choice and preliminary user experiences with existing
probabilistic programming frameworks

• Two concrete challenges in Skanned’s Voucher Scan-
ning system

• Proposed probabilistic models for the presented chal-
lenges and preliminary results

2 Skanned’s Voucher Scanner
The core pipeline of Skanned’s VS system is intuitively sim-
ple. Integration partners send their vouchers through a web
service to be processed by the VS pipeline (presented in
fig. 1). The pipeline then performs two steps:

• It uses Optical Character Recognition (OCR) to convert
Adobe PDF files and images to text boxes.

• It uses Feature Extractors (FEs) to extract information,
e.g., sender and total amount, from the OCR text boxes.

The current FEs work completely deterministically using
heurestics with parameters determined by the VS system’s
developers using their domain knowledge. This already pro-
vides good results, achieving an 85% accuracy in average

PROBPROG ’18, October 04–06, 2018, Boston, MA, USA
2018.

across all features without further post-processing. 1, There
is room for improvement to cover the remaining 15% by
improving on its drawbacks:
Staticness The current system’s parameters are fixed by

the developers and do not dynamically take into ac-
count live data and customize the system for different
individual clients.

Confidence The current system does not provide a confi-
dence score on the accuracy of the extracted informa-
tion. Such score is important to flag for clients per-
forming manual corrections of the extracted results.

3 Framework Selection and Experiences
While probabilistic programming is an emerging field, there
have already been multiple powerful frameworks developed
across a variety of languages. Skanned’s pipeline is writ-
ten in Python, which made us focus on Python frameworks
for the sake of interoperability. Luckily, there are plenty
of actively developed Python frameworks for probabilistic
programming, including PyMC3 [10], Edward [12], Pyro [13]
and ZhuSuan [11]. We will now further discuss aspects of
these frameworks that influence our selection, and our pre-
liminary experiences on using their touted features.

Inference Techniques Exact inference of the posterior dis-
tribution is intractable for most realistic probabilistic mod-
els [3, Part III]. There are two popular types of approximate
techniques: sampling and variational inference.
Sampling All discussed frameworks support modern effi-
cient sampling techniques like Hamiltonian Monte Carlo
(HMC) [5, 7] which uses the gradient to direct sampling. Our
preliminary experiences show us that sampling is relatively
straightforward to use and provides accurate results when
successful. Unfortunately, we found it hard to scale to even
modestly sized data sets (around 100 vouchers), and using dis-
crete latent features—which we found useful in some models
we tried—requires us to fallback to much slower traditional
MCMC-based sampling [1].
Variational Inference Modern variational inference [4, 6, 8]
supported by the discussed frameworks, can be effectively

1The VS system achieves better results in practice, since it internally creates
templates from vouchers that have already been seen and validated, but this
does not work well with unseen voucher types.

1



PROBPROG ’18, October 04–06, 2018, Boston, MA, USAAhmad Salim Al-Sibahi, Thomas W. Hamelryck, and Fritz Henglein

combined with deep learning techniques for scalability. Our
preliminary experiences show that this technique scales
much better to large datasets since it allows mini-batch train-
ing, but in turn require a more elaborate set-up compared
to sampling. In particular, the choice of the approximating
distribution—whose distance should be minimized to the
true posterior—is harder for multi-modal distributions and
non-convexity makes it necessary to use considerable time
tuning hyperparameters to get an acceptable solution.

Business Criteria Our intention is to integrate probabilis-
tic programming in an industrial system and so it is impor-
tant to consider business-relevant criteria as well.
Source Code Availability. Luckily all the aforementioned frame-
works have freely available source code, that is released un-
der an open source license.
Framework Maturity. PyMC3 is a completely re-engineered
version of the PyMC framework, which has been developed
since 2003. In our preliminary experiences, it is also the
framework with widest support of distributions and simplest
to use interface in terms of initialization, automation and
tuning. Other frameworks are still relatively young. Edward
is around 2 years old (from 2016), but has recently been
integrated into the main TensorFlow project. Both Pyro and
ZhuSuan have been developed since late last year and are
still in early stage.
Industrial Support. All frameworks except ZhuSuan, have
been sponsored by industrial partners. PyMC3 is sponsored
by NumFocus and Quantopian. Edward is developed by
Google Brain team that is also behind TensorFlow. Pyro
is developed by Uber’s AI team.

GPU Support Most of the frameworks tout CUDA support
as a feature to accelerate inference for large data set. We set
out to test this on a 10-core Intel Xeon CPU and 2 Nvidia
Quadro P5000 GPUs. Unfortunately, we had a hard time
to exploit GPU performance for inference in our models
(using PyMC3 or Pyro), where the powerful CPU usually
was quicker.

Choice of Framework Given the stated criteria, our main
focus has been using PyMC3. We however found it easy
to port our models to other frameworks, and have done
so occasionally when we wanted to compare aspects like
performance and expressibility.

4 Challenges
We will discuss two concrete challenges in the VS system:
i) the FE component for finding the total amount on a receipt,
and ii) the algorithm for automated detection of keywords
on a voucher.

Finding Total Amounts The FE that is used to find to-
tal amounts currently uses a combination of deterministic
techniques and heuristics:

1. It looks for a numeric-like value, since amounts are
almost always numerical.

2. It tries to prioritize values that are close to relevant
keywords, e.g. ‘Total’ or ‘Amount’.

3. It prioritized large amounts over lower ones, since the
total amount is usually a sum of other amounts.

The first point is relatively standard, since it simply filters
everything that does not look like an amount. Our goal is
therefore to probabilistically model the keyword-based pri-
oritization and magnitude. For the keyword-based prioritiza-
tion, our hypothesis is that more a feature is usually aligned
vertically or horizontally to relevant keywords (around 0◦
or 90◦) and the closer it is the better. For the amount value,
the larger the relative magnitude (normalized compared to
others) the more likely it is the total amount.
We have implemented a simple probabilistic model in

PyMC3: we rely on the position to the closest positive key-
word, using a using a mixture model for the angle (with
means 0 and π

2 radians) and skewed normal distributions
for distances and relative magnitude. For a given voucher
we then choose the amount that has the largest probability
according to the model. This has so-far worked well, cor-
rectly identifying around 80% of the total amounts in our
test set. Our plan is now to generalize the model to increase
accuracy, by using a Bayesian non-parametric model that
takes into account a variable number of keywords and other
potentially interesting features (e.g., absolute position on
page and page number).

Keyword Detection Currently, the VS system uses a man-
ually pre-compiled list of keywords to guide the information
extraction process. There is however an interest in automati-
cally detecting new keywords, since the current system is not
scalable and hard to adapt for new languages. Our proposed
solution is as follows:

1. Rely on DF-ITF [9] to findwords that are commonly oc-
curing across vouchers, but rate in a particular voucher.
This produces a set of proposed keywords.

2. Identify which features a particular proposed keyword
is relevant to, using existing validated data set of found
features. We rely on the same positional assumptions
as in total amount localization but flip the problem:
given we know where our target feature is, how rele-
vant does a particular proposed keyword seem?

For the first point, we used a simple deterministic calculation
since we were only interested in proposals and confidence
is here less important.

For the second point we are aiming to use a probabilistic
model. We are currently in an ongoing effort in evaluating
different models for the task. One of our models is inspired by
existing Gaussian [2] and Spatial [14] LDA techniques, and
tries to cluster potential keywords around different features
using the distances and angles to them. Our other model

2



Prob. Prog. for Vouchers PROBPROG ’18, October 04–06, 2018, Boston, MA, USA

relies on Beta-Bernoulli latent feature modelling, and tries
to infer the relevance of a keyword to each feature directly
using the same positional information.We have implemented
both models and we are in the process of tuning the training
of them; our results so-far have been inconclusive.

References
[1] Siddhartha Chib and Edward Greenberg. 1995. Understanding the

metropolis-hastings algorithm. The american statistician 49, 4 (1995),
327–335.

[2] Rajarshi Das, Manzil Zaheer, and Chris Dyer. 2015. Gaussian LDA
for Topic Models with Word Embeddings. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing
of the Asian Federation of Natural Language Processing, ACL 2015, July
26-31, 2015, Beijing, China, Volume 1: Long Papers. The Association for
Computer Linguistics, 795–804. http://aclweb.org/anthology/P/P15/
P15-1077.pdf

[3] Andrew Gelman, John B. Carlin, Hal S. Stern, David B. Dunson, Aki
Vehtari, and Donald B. Rubin. 2014. Bayesian Data Analysis (3 ed.).
Chapman & Hall/CRC.

[4] Matthew D. Hoffman, David M. Blei, Chong Wang, and John William
Paisley. 2013. Stochastic variational inference. Journal of Machine
Learning Research 14, 1 (2013), 1303–1347. http://dl.acm.org/citation.
cfm?id=2502622

[5] Matthew D. Hoffman and Andrew Gelman. 2014. The No-U-turn
sampler: adaptively setting path lengths in Hamiltonian Monte Carlo.
Journal of Machine Learning Research 15, 1 (2014), 1593–1623. http:
//dl.acm.org/citation.cfm?id=2638586

[6] Alp Kucukelbir, Dustin Tran, Rajesh Ranganath, Andrew Gelman, and
David M. Blei. 2017. Automatic Differentiation Variational Inference.
Journal of Machine Learning Research 18 (2017), 14:1–14:45. http:
//jmlr.org/papers/v18/16-107.html

[7] RadfordM. Neal. 2011. MCMC using Hamiltonian dynamics. Chapman
& Hall / CRC Press, Chapter 5.

[8] Rajesh Ranganath, Sean Gerrish, and David M. Blei. 2014. Black Box
Variational Inference. In Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics, AISTATS 2014, Reyk-
javik, Iceland, April 22-25, 2014. 814–822. http://jmlr.org/proceedings/
papers/v33/ranganath14.html

[9] Marçal Rusiñol, Tayeb Benkhelfallah, and Vincent Poulain D’Andecy.
2013. Field Extraction from Administrative Documents by Incremental
Structural Templates. In 12th International Conference on Document
Analysis and Recognition, ICDAR 2013, Washington, DC, USA, August
25-28, 2013. IEEE Computer Society, 1100–1104. https://doi.org/10.
1109/ICDAR.2013.223

[10] John Salvatier, Thomas V. Wiecki, and Christopher Fonnesbeck. 2016.
Probabilistic programming in Python using PyMC3. PeerJ Computer
Science 2 (2016), e55. https://doi.org/10.7717/peerj-cs.55

[11] Jiaxin Shi, Jianfei. Chen, Jun Zhu, Shengyang Sun, Yucen Luo, Yihong
Gu, and Yuhao Zhou. 2017. ZhuSuan: A Library for Bayesian Deep
Learning. arXiv preprint arXiv:1709.05870 (2017).

[12] Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen
Liang, and David M. Blei. 2016. Edward: A library for probabilistic
modeling, inference, and criticism. arXiv preprint arXiv:1610.09787
(2016).

[13] Uber AI Labs. [n. d.]. Pyro: Probabilistic Programming Language.
http://pyro.ai/

[14] Xiaogang Wang and Eric Grimson. 2007. Spatial Latent Dirichlet
Allocation. In Advances in Neural Information Processing Systems 20,
Proceedings of the Twenty-First Annual Conference on Neural Infor-
mation Processing Systems, Vancouver, British Columbia, Canada, De-
cember 3-6, 2007, John C. Platt, Daphne Koller, Yoram Singer, and

Sam T. Roweis (Eds.). Curran Associates, Inc., 1577–1584. http:
//papers.nips.cc/paper/3278-spatial-latent-dirichlet-allocation

Acknowledgments
We would like to thank Dan Rose and the VS developers at
Skanned (Bjørn Kaae and Toke Reines) for providing feed-
back and valuable domain knowledge for this work. This
material is based upon work supported by the Innovation
Fund Denmark under Grant No. 7039-0072B. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author and do not necessarily
reflect the views of the funding agencies.

3

http://aclweb.org/anthology/P/P15/P15-1077.pdf
http://aclweb.org/anthology/P/P15/P15-1077.pdf
http://dl.acm.org/citation.cfm?id=2502622
http://dl.acm.org/citation.cfm?id=2502622
http://dl.acm.org/citation.cfm?id=2638586
http://dl.acm.org/citation.cfm?id=2638586
http://jmlr.org/papers/v18/16-107.html
http://jmlr.org/papers/v18/16-107.html
http://jmlr.org/proceedings/papers/v33/ranganath14.html
http://jmlr.org/proceedings/papers/v33/ranganath14.html
https://doi.org/10.1109/ICDAR.2013.223
https://doi.org/10.1109/ICDAR.2013.223
https://doi.org/10.7717/peerj-cs.55
http://pyro.ai/
http://papers.nips.cc/paper/3278-spatial-latent-dirichlet-allocation
http://papers.nips.cc/paper/3278-spatial-latent-dirichlet-allocation

	1 Introduction
	2 Skanned's Voucher Scanner
	3 Framework Selection and Experiences
	4 Challenges
	References
	Acknowledgments

