Abstract Interpretation of High-Level Transformations

Motivation
Veritying transtformations is challenging because they
manipulate rich structures like

rograms and
bTog “77% of the participants con-

iiiliilm sider that refactoring comes with

a risk of introducing subtle bugs and
els. h.l_ functionality regression”
creasing (Kim, Zimmermann & Nagappan -
(rustwor-

FSE 12)
thiness is key to

wider use in critical systems.
High-Level Transformations

TRON (Al-Sibahi et al. — SLE ’16) is a formal IMP-like

language that captures key aspects of high-level transfor-
mation languages.

Y UNIPLATE w
} % StrLatego/ﬁ(T

Raecal

AlTLC

TRON

Kiama

The example below presents a simplified field renaming
refactoring in TRON. Type-directed matching allows it
to be concisely written, since all relevant field access ex-
pressions can be retrieved using a single line of code (7).

1 input: target_class: Class, old_field: Field, new_field: Field
2 precondition: old_field € target_class.fields

3 A new_field ¢ target_class.fields

4

b target_class.fields :=

6 (target_class.fields \ old_field) U new_field

7 foreach faexpr € target_class match™ FieldAccessExpr do
8 1f faexpr.field = old_field A

9 faexpr.target.type = target_class then

10 faexpr.field := new_field

11 else skip

Method Overview

Operational Semantics

Program Properties

Collecting Semantics

Abstract Domains J

Abstract Semantics

SH[s] u* = pu*’

Challenges

* Manipulating and iterating over sets of instances with
unbounded cardinality

* Performing type-directed matching without consider-
ing all intermediate shapes of the instance graph

 Efficiently handling of aliasing and subtyping

Select Heap Abstractions

'The abstractions are parametrized by a valuation (Lavi-
ron et al. - ESOP '10), which maps between concrete
and abstract instances.

Ahmad Salim Al-Sibahi, IT University of Copenhagen

0(v"[{0,,0,,05} > O]) a(v 1)

, > - -L@ Ej"y(v) o‘
\ - - Empty set nodes @ abstract

))/(V[0w {O 0 3}
over empty sets of instances.

Abstract instance sets O abstract over
: T
) -
’ ‘)/(V)

sets of instances with unbounded size.
L V(V)

@ Q disjoint

Partition nodes W join together disjoint abstract instance graphs.

a(v

V(V)

04
V(V) a < -
V~.

Inspired by symbolic execution techniques (Dillig et al. - PLDI 'l 1),

®®l:L.
|)‘y(v‘).

guard nodes > represent instance graphs that depend on a condition &.

(k- 20
| .. I
y(v)® h‘

or OL(V) P if

"
V(V g
Slolr W

y(v)
represent local alternatives between instance graphs.

Choice nodes

a(vh

S _ -
name, a(v) @

Y o
£ Y0
P a=" I a(v’h)

& ‘-L.-.@

y(v)

Field links can go from abstract instances (instance sets) to instance
graphs and constraint the shape of the heap.

. a(vh
@ @ T A
b @

y(v)

a(v

@ «.
! J y(v)
Descendant links constraint reachable instances of a given type from

abstract instances (instance sets), abbreviating intermediate structure.

Abstract Semantics

target_class| old_field |new_field | target_class| old_field |new_field |

\ l target_class.fields := l

G @ (target_class.fields \ old_field) G @

fields U neW_ﬁeld fields

Over-approximative execution of first example statement
Acknowledgements

Parts of this work were carried out at INRIA Rennes, and I thank my host Thomas Jensen for his continu-
ous feedback. I thank Lars Birkedal and his team (Aarhus University), and Mihaela Sighireanu and Constan-
tin Enea (Paris Diderot University) for the short visits I had in early stages of this work. I thank Jeft Pelz for
suggesting the name TRON. I thank Andrzej Wasowski and Aleksandar Dimovski for supervising my Ph.D.

T UNIVERSITY OF COPENHAGEN

