Abstract Interpretation of High-Level Transformations

Motivation
Veritying transtformations is challenging because they
manipulate rich structures like

rograms and
bTog “77% of the participants con-

iiiliilm sider that refactoring comes with

a risk of introducing subtle bugs and
els. h.l_ functionality regression”
creasing (Kim, Zimmermann & Nagappan -
(rustwor-

FSE 12)
thiness is key to

wider use in critical systems.
High-Level Transformations

TRON (Al-Sibahi et al. — SLE ’16) is a formal IMP-like

language that captures key aspects of high-level transfor-
mation languages.
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The example below presents a simplified field renaming
refactoring in TRON. Type-directed matching allows it
to be concisely written, since all relevant field access ex-
pressions can be retrieved using a single line of code (7).

1 input: target_class: Class, old_field: Field, new_field: Field
2 precondition: old_field € target_class.fields

3 A new_field ¢ target_class.fields

4

b target_class.fields :=

6 (target_class.fields \ old_field) U new_field

7 foreach faexpr € target_class match™ FieldAccessExpr do
8 1f faexpr.field = old_field A

9 faexpr.target.type = target_class then

10 faexpr.field := new_field

11 else skip
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Challenges

* Manipulating and iterating over sets of instances with
unbounded cardinality

* Performing type-directed matching without consider-
ing all intermediate shapes of the instance graph

 Efficiently handling of aliasing and subtyping

Select Heap Abstractions

'The abstractions are parametrized by a valuation (Lavi-
ron et al. - ESOP '10), which maps between concrete
and abstract instances.
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Inspired by symbolic execution techniques (Dillig et al. - PLDI 'l 1),
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represent local alternatives between instance graphs.
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Field links can go from abstract instances (instance sets) to instance
graphs and constraint the shape of the heap.
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Descendant links constraint reachable instances of a given type from

abstract instances (instance sets), abbreviating intermediate structure.

Abstract Semantics

target_class| old_field |new_field | target_class| old_field |new_field |

\ l target_class.fields := l

G @ (target_class.fields \ old_field) G @

fields U neW_ﬁeld fields

Over-approximative execution of first example statement
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