Foundational Analysis Techniques for
High-Level Transformation Programs

PhD Candidate: Ahmad Salim Al-Sibahi
Supervisors: Andrzej Wasowski &
Aleksandar S. Dimovski

Worrisome Fact about Transformations

Refactoring comes with a risk of
introducing subtle bugs and
functionality regression.

77%, from Kim, M., Zimmermann, T., & Nagappan, N. (2012).

A field study of refactoring challenges and benefits. FSE ‘12

Key Contributions

Translation Validation

[.n,
L

|

Symbolic Execution ? }
EEE - X

Static Analysis 5

High-level Transformations

What do | mean by a high-level

transformation?

class Account
Id id;
Money credit

membershipLevel
return max(100,

this.credit / 100);

eq/Account o

return
this.credit == o.credit &&
this.id == o0.id;

class Account
Id id;
Money balance

membershipLevel
return max(100,
this.balance / 100);

rename credit to
balance in
Account

eq/Account o

return
this.balance == o.balance &&
this.id == o0.id;

What do | mean by a high-level
transformation?

Source

Refactorings

Model
Transformation / > ‘

Code Generation

What is a high-level transformation language?

Model Transformation Program Transformation
Languages Languages

Rule-based Model

7 Transformation
@/ﬂ(t(we

Graph
Rewriting

What is a high-level transformation language?

 Constructs for traversing and
manipulating structures

« Expressive pattern matching
and querying operations

* First-class collections and
collection operations

Declarative transformation languages

. Family |
rule Member2Female Fathor
transform member ;: Families!Member (S =ans
. Member |
to person : Persons!Female

{

guard: member.isFemale()

firstName = “Mette” firstName = “Frederik”

person.fullName =
member.firstName +" "+

member.familyName(); Male |
irstName = “Mette Hansen
=
Female | | Female |
s = o o] [0131101

Program transformation languages

data ~vat = zero() | suc(nNat pred);
data Expr = var(str nm) | cst(wnvat vl) |
mult(Expr el, Expr er); 1T*(x*10*1)*y 1*((3*0)*2)

Expr simplify(Expr expr) =
bottom-up visit (expr) {

case mult(cst(zero()), y) => cst(zero())
case mult(x, cst(zero())) => cst(zero()) X*10*y 0
case mult(cst(suc(zero())), y) => vy
case mult(x, cst(suc(zero()))) => x

5

Establishing of Model Transformation
Languages

» Popular graph and rule-based
model transformation
languages are Turing-complete

 Traditional programming
language verification
techniques needed!

11

Translation Validation gj

v

Validating an Industrial Software
Modernization Transformation

Based on losif-Lazar, A. F., Al-Sibahi, A. S., Dimovski, A. S., Savolainen, J. E.,
Sierszecki, K. & Wasowski, A. (2015). Experiences from designing and validating a
software modernization transformation. ASE ‘15.

configuration config =
selectedConfpParameter;

Option opt =
selectedOptParameter;

bool result = false;

switch (config) {

case configl:

if (opt == optionl)
result = true;

selectedConfParameter ~ configl A

break; selectedOptParameter =~ optionl
default: Modernization

result = true;)

break: Transformation

}

return result;

4119 functions

Modernizing an Industrial Configuration Tool

Transforming Danfoss’ imperative code base for configuring frequency converters to pure logical 1 3
formulae compatible with off-the-shelf constraint solvers

Syntactic Transformation using TXL

rule convert_simple_sel_stmt
replace [selection_statement]

468 rule definitions handling: 1t 7 (EXP [expression] °)
. . STMT [statement]

* Preprocessor directives

* Inlinining variables

» Converting and simplifying
switch’s and if’s to ternary o

"C EXP ’) '? (C STMT ’) ’: ’(TRUE_STMT ’)

expressions e d e

Checking Correctness of Modernization using
Translation Validation

, —

U

configuration config =
selectedConfpParameter;

Option opt =
selectedOptParameter;

bool result = false;

switch (config) {

case configl:

if (opt == optionl)

result = true; selectedConfParameter =~ configl A

break: selectedOptParameter =~ optionl
default: Modernization

result = true; .

break; Transformation

}

return result;

selectedConfParameter ~ configl =
selectedOptParameter ~ optionl

Validating the Industrial Configuration Tool

Discovering a bug in the modernization transformation 1 6

£

Correct programs are all alike; every buggy
program is buggy in its own way.

)

Anna Karenina principle as applied to program correctness

Qualitative Understanding of Transformation Bugs

Qualitative Understanding of Transformation
Bugs

50 bug cases out of 4491 functions

 All negations e Some function e Use of undeclared
dropped calls dropped variables

e Structure e Some conditional e Variable

replaced by a branches dropped declarations
constant integer « Conditionals with without

« Unexpected error code assignment not
exceptions in assignments handled
output expression dropped

Symbolic Execution ? ‘+

T E—r—r—r

Effective Test Generation for High-Level
Transformation Programs

Based on Al-Sibahi, A. S., Dimovski, A. S., & Wasowski, A. (2016). Symbolic
Execution of High-Level Transformations. SLE ‘16.

Test case generation for transformations

//

 Goal: Generate test cases
given transformation program

 Rely on definition of
transformation program to
efficiently cover interesting
paths of program

Rename Field Refactoring

class Account
Id id;
Money credit

membershipLevel
return max(100,
this.credit / 100);

eq/Account o

return
this.credit == o.credit &&
this.id == o0.id;

rename credit to
balance in
Account

class Account
Id id;
Money balance

membershipLevel
return max(100,
this.balance / 100);

eq/Account o

return
this.balance == o.balance &&
this.id == o0.id;

21

Rename Field Refactoring

target_class.fields :=
; (target_class.fields \ old_field) u new_field

‘ foreach faexpr €

target_class matchx FieldAccessExpr do

1t faexpr.field = old_field A
0. * fields] faexgr.ﬁzrget.typ$_=15arget_c1ass then
— e aexpr.fie := new_f1ie

name : String —— else skip
| ThisExpr |

FieldAccessExpr

Test Generation using Symbolic Execution

super

target_class.fields :=

(target_class.fields \ old_field) u new_field
foreach faexpr €

target_class matchx FieldAccessExpr do

if faexpr.field = old_field A

faexpr.target.type = target_class then
faexpr.field := new_field
else skip

Model o
Finder I

Symbolic Execution

Concrete

class Account
Id id;
Money credit

membershipLevel
return max(100,

this.credit / 100);

eq(Account o

return
this.credit == o.credit &&
this.id == o.id;

Symbolic
class

Methods?

class.fields :=
(class.fields \ old_field) u new_field
foreach faexpr € class matchx FieldAccessExpr do
if (faexpr.field = old_field
A faexpr.target.type = class) then
faexpr.field := new_field
else skip

class QQETICYD

Ofo ' nf?
F'e'dsr’ Fields?

Methods? Methods?

class.fields :=
(class.fields \ old_field) u new_field
foreach faexpr € class matchx FieldAccessExpr do
if (faexpr.field = old_field
A faexpr.target.type = class) then

faexpr.field := new_field
else skip

class QETEYD

of? nf? of?
Fields?

Methods?

Methods? FieldAccessExprs?

nf?
Fields?

Methods?

class.fields :=

(class.fields \ old_field) u new_field
foreach faexpr € class matchx FieldAccessExpr do
1f (faexpr.field = old_field

A faexpr.target.type = class) then
faexpr.field := new_field
else skip

class QEMEYD

nf? of?
Fields?

Methods?

of?

Fields?
= ()
Methods? fae? target?

-

FieIdAccessExprs?J

27

Symbolic
Execution
Continues...

SymexTRON

 Scala-based implementation of symbolic execution for TRON
» 36 Scala files, ~3,485 SLOC total

» Relies on KodKod model solver and Plingeling SAT solver

» Artifact Evaluated and Proudly Open Source
» http://itu-square.github.io/SymexTRON/

http://itu-square.github.io/SymexTRON/

Test Generation Results

Branch coverage (%) of test generators

100
90 .
80 s
70 - - S e
60 s s .
50 4 s s .

4y B N e B N

o 2 - . s s i e

e - B B e

e . 2 e @ e B s 1

RenamefField RenameMethod ExtractSuper ReplaceDelegation Fam2Pers Path2Petri Class2Rel

Their (Black-box) Our (White-box)

Qe g

Static Analysis S

Verifying type and shape properties for Rascal

What is Rascal?

» High-level Language for
Analysing and Transforming
Programs

» Popular in the Software
Language Engineering
Community

» Developed at CWI Amsterdam
by the SWAT team

What is Rascal?

» Full programming language with algebraic datatypes, functions
with case analysis, imperative variables, various loops (for, while,
solve) with control flow (break, continue), and exceptions

» Generic traversals using a wide range of strategies (bottom-up,

top-down, innermost, outermost, bottom-up-break, top-down-
break)

« Expressive pattern matching constructs, including collection

patterns, non-linear patterns, negated patterns, and deep
matching patterns

What is Rascal?

data Config =
flat(str option, str val)
| nested(str group, list[Config] subconfigs);

Config deduplicate(Config config) =
innermost visit(config) {
e . 7 X, "ys| =>[*Xs, x, *zs, *ys]

i

Rascal Light, a Formal Subset of Rascal

Based on Al-Sibahi, A. S. (2017). The Formal Semantics of Rascal Light.
arXiv CoRR, abs/1703.92312.

Rascal Light

 Fully-formalized subset of
Rascal

» Captures key features like
Traversals and Pattern
Matching

* |deal for developing formal
verification techniques

Rascal Light

Includes

 Large subset of expression
language
« Case analysis, Variables,

Exceptions, and Loops with control
flow operators

» Traversals including all strategies

» Expressive pattern matching
operations including backtracking

Excludes

« Concrete syntax support, string
interpolation, and regular
expressions

« Standard Library, Input/Output,
and FFI

* Module system and extensibility

» Advanced type system features
like polymorphism and
inheritance

Method of Formalising Rascal Light 38

* Develop an Operational
Semantics for Rascal Light
based on:

» Rascal documentation
« Implementation of micro-Rascal

» Correspondence with Rascal
developers (esp. Paul Klint)

» Checked using prototype
implementation and proofs of
target theorems

st
e;0 = success v;0" ¢s;v;0"” = success v’; 0’

expr visit
E-VisiT-Sucs

st visit e ¢s; 0 = success v’; 0’
— expr

Rascal Light

» Prototype Interpreter
implemented in Scala

» Closely corresponds to the
operational semantics

» Tested against a series of real
and synthetic Rascal
transformations

Tests:

{§

The robustness of the semantics depends upon
theorems

)

Milner, R., Tofte, M., Harper, R. (1990). The Definition of Standard ML.

Correctness of Rascal Semantics

Correctness of Rascal Light semantics

Proven theories:
 Purity of backtracking
 Strong typing
 Partial progress

» Terminating subset

41

Static Analysis Tool for Rascal Light

Based on Al-Sibahi A. S., Jensen, T. P., Dimovski, A. S. & Wasowski, A. (2017).
Verification of High-Level Transformations with Inductive Refinement Types.
Unpublished Draft.

Type and Shape Properties

Inductive Shape

» Types

Example represented programs * Inductive shapes
flat(“playerld”, 10)

nested(“players”
[flat(“playerld”, 1),
flat(“playerld”, 3)]

-

Rascal Static Analysis Challenges

Challenges Solutions
1. Modular constljuction of
1. Complex inductive abstract domains
structures with collections 2. Schmidt-style abstract
2. Non-modular control flow interpretation directly on
. operational semantics
3 Substan.tlallnumber of 3. Systematic mapping of
expressive language concrete semantics to

constructs abstract semantics

£

It is convenient to think of an [abstract
intepretation] as a “symbolic execution”
where the symbols have semantic content.

)

Schmidt, D. A. (1998). Trace-Based Abstract Interpretation of Operational Semantics. Journal of
LISP and Symbolic Computation 10, pp. 237-271.

Static Analysis using Schmidt-style Abstract Interpretation

Static Analysis using Schmidt-style Abstract
Interpretation

.
E— E

7

Implementation

« Rascal light Abstract
Interpretation Tool (RABIT)

* Development effort:
* ~3 months of part-time
programming
» 5,673 SLOC Scala (incl. concrete
interpreter)

 Structured technique helped
reduced bugs

* Intrinsically complex meta-meta-

program, makes it hard to debug
and log calls

\/

CC-NC-ND KnitSpirit on Flickr

\ | /‘/_ ‘ < ! §

\ T A

\ ? { \ il b /
1910 l‘tl” 1""'.]‘1//)"4§Ad/,// //// "

AN

Evaluation Subjects

Negation Normalize a propositional formula so that all negations (=) are only in
Normal Form front of atoms
(NNF)

Rename Struct Refactor the name of the field of a structure, ensuring all references are
Field (RSF) updated correctly

Desugar Translate for-loops and switch-statements to while-loops and if-
Oberon-0 statements resp. for the Oberon-0
(DSO0)

Glagol-to-PHP Code generation to PHP from expressions in the Glagol DSL

Expressions
(G2PE)

Verified Properties

Implication is not used as a connective in the result
All negations in the result are in front of atoms
Structures should not define fields with the old nhame

There should not be any field access expression to the
old field name

For-loops correctly desugared to while-loops
Switch-statements correctly desugared to if-statements
No auxiliary data in output

Only produce simple PHP expressions given simple Glagol
expressions

Not produce unary PHP expressions if there were no +/-
markers in input Glagol

v
v
X
v
v
v
X
v
v

Wrapping up

Key Contributions

Translation Validation

[.n,
L

|

Symbolic Execution ? }
EEE - X

Static Analysis 5

